B.- LES OBSTACLES AU DÉVELOPPEMENT DE LA BIOLOGIE DE SYNTHÈSE

Ces obstacles tiennent à des facteurs d'ordre culturel et institutionnel, mais aussi économique.

1.- DES FACTEURS D'ORDRE CULTUREL ET INSTITUTIONNEL

La BS souffre de la désaffection pour les carrières scientifiques dans les pays développés.

a) La désaffection pour la science

On ne peut que constater la désaffection croissante des étudiants pour les études scientifiques, phénomène qui touche essentiellement les pays occidentaux, à la différence des pays asiatiques.

1° Aux États-Unis

Un rapport rendu en 2010 227 ( * ) par les académies nationales américaines a identifié les causes qui, selon elles, sont à l'origine de la perte de leadership des États-Unis dans les domaines de l'économie, de la science et de l'innovation.

Parmi ces causes, elles relèvent entre autres que :

- en 2000, le nombre d'étudiants étrangers étudiant les sciences physiques ou les sciences de l'ingénieur avait dépassé, pour la première fois, le nombre d'étudiants américains,

- le nombre de titres de docteurs décernés dans les mathématiques et les sciences physiques par les universités américaines est demeuré inchangé au cours de la décennie 2000-2010,

- les États-Unis délivrent davantage de diplômes aux étudiants en arts plastiques qu'aux étudiants ingénieurs.

Pour enrayer cette tendance, le rapport recommande que davantage d'Américains fassent carrière dans les mathématiques, les sciences et les sciences de l'ingénieur. Reprenant ces thèmes dans son discours sur l'Etat de l'Union du 25 janvier 2011, le Président Obama a déclaré que ce n'est pas seulement le vainqueur du Super Bowl qui méritait d'être célébré, mais le vainqueur d'un concours scientifique.

2° En Allemagne

Un sondage récent sur le classement des dix filières d'études préférées des étudiants, selon leur sexe, a fait apparaître les données suivantes :

Classement de la matière

Etudiantes

Etudiants

1

Sciences de gestion

Sciences de gestion

2

Germanistique

Construction de machines

3

Médecine

Informatique

4

Sciences juridiques

Ingénieur économiste

5

Sciences de l'éducation

Electronique

6

Anglais

Sciences juridiques

7

Biologie

Sciences économiques

8

Sciences économiques

Médecine

9

Psychologie

Informatique appliquée à l'économie

10

Mathématiques

Physique

Source : Studieren-im-netz. org

Les mathématiques sont classées en dernière position dans le choix des étudiantes comme la physique dans le choix des étudiants. En ce qui concerne les matières utiles au développement de la BS, si l'informatique est classée en troisième position chez les étudiants, elle est, en revanche, exclue du classement des étudiantes. Quant à la biologie, elle est classée septième chez les étudiantes, tandis qu'elle n'est pas du tout citée dans le classement des étudiants.

3° Au Royaume-Uni

Plusieurs enquêtes tendent à confirmer une désaffection des jeunes à l'égard des sciences. Une enquête effectuée en 2008 dans trente collèges d'Angleterre a montré que seulement un tiers des jeunes âgés de 13-14 ans avaient classé les matières scientifiques parmi leurs favorites.

Une autre enquête de 2008 a noté que les enfants jugeaient la science trop théorique et non pertinente pour les expériences de la vie quotidienne. C'était aussi le cas de 75 % des enfants âgés de 9 à 14 ans qui, s'ils considéraient la science comme utile, n'estimaient pas toutefois être attirés par elle.

Par ailleurs, les résultats pour 2010 du General Certificate of Secondary Education , l'équivalent du baccalauréat, font ressortir que le nombre de lycéens ayant choisi l'option « triple science » (chimie, biologie et physique) avait doublé depuis 2007. Mais, en 2010, seulement 16 % des candidats relevaient de cette filière. De plus, leur orientation vers la recherche scientifique n'est pas majoritaire à l'issue de cet examen.

Enfin, s'agissant de l'attitude des jeunes à l'égard des sciences de l'ingénieur, une enquête de 2010 effectuée auprès de jeunes âgés de plus de 20 ans a montré que 61 % considéraient que cette branche pourrait leur offrir une carrière attractive. Néanmoins, selon cette même enquête, moins de 16 % des jeunes interrogés avaient personnellement envisagé d'effectuer une carrière d'ingénieur.

4° En France

Le rapport d'information de Jean-Marie Rolland 228 ( * ) , établi au nom de la Commission des affaires culturelles, après avoir relevé un désenchantement général vis-à-vis de la science, a fait état d'une désaffection très nette en France pour les études en physique-chimie et en mathématiques.

C'est ainsi que le nombre de diplômés en sciences physiques a diminué de 37 % entre 1995 et 2006 et de 18 % pour ce qui est des diplômés en mathématiques entre 1998 et 2006.

Dans une note de veille d'octobre 2006, le Conseil d'analyse stratégique constate une désaffection particulièrement marquée dans les filières scientifiques du 1 er cycle, dont les effectifs diminuent de façon préoccupante de 9,4 % pour la seule année 2004. En revanche, les effectifs des sciences de l'ingénieur ont enregistré une forte croissance - de plus de 200 % pour l'informatique - au cours de la période 1995-2000. Comme la BS a besoin des deux types de compétences pour se développer de façon équilibrée, les sciences fondamentales d'une part (biologie, physique, mathématiques, chimie et biochimie) et les sciences de l'ingénieur d'autre part (électronique, informatique), un déséquilibre dans les expertises pourrait entraver sa progression ou favoriser l'approche ingénieur au détriment d'une approche plus fondamentale.

L'interdisciplinarité nécessaire au développement de la BS est donc compromise par la diminution des étudiants en sciences en Europe, comme aux États-Unis. Toutefois les États-Unis compensent cette désaffection par l'accueil d'étudiants du monde entier : il est essentiel, dans ce cadre, que la France développe, sans entraves réglementaires, l'accueil d'étudiants et de chercheurs venus du monde entier si elle veut continuer à être performante sur le plan scientifique et celui de l'innovation.

b) Des dysfonctionnements affectant le système de recherche et de formation

L'évolution de notre système de formation, en France, ne fait qu'accentuer cette tendance à la désaffection et, pire, à la méconnaissance des sciences. Cette évolution n'est pas favorable, pour plusieurs raisons :

- réduction de la durée des enseignements scientifiques : Pierre Léna, délégué à l'éducation et à la formation et membre de l'Académie des sciences a déploré que moins de la moitié des écoles primaires aient mis en oeuvre les deux heures d'enseignement scientifique prescrites par les programmes 229 ( * ) .

Par ailleurs, la méthode active d'initiation aux sciences dans les écoles primaires, promue par « La main à la pâte » lancée il y a 15 ans par Pierre Léna et Georges Charpak, est trop peu présente dans les écoles.

De même, la réforme des programmes scientifiques de la classe de 1 re S s'est traduite, depuis la rentrée 2011, par la réduction d'1 h 30 par semaine de l'enseignement de physique. Quant aux 4 heures hebdomadaires consacrées aux mathématiques, Cédric Villani, Médaillé Fields, a douté qu'une telle durée soit suffisante pour former de futurs chercheurs ou même pour l'instruction de base des lycéens 230 ( * ) . Enfin, les sciences de la vie ont été mutualisées avec les sciences de la terre, ce qui les rend d'autant moins lisibles et attractives pour les lycéens.

Cette tendance à la réduction des enseignements scientifiques n'est pas propre à la France. Lars Merkel, professeur à l'Université technique de Berlin, nous a indiqué que l'Allemagne était confrontée au même phénomène.

- manque de professeurs : le rapport des académies nationales des États-Unis note que 46 % des professeurs quittent l'enseignement dans les cinq années ayant suivi leur entrée dans la carrière. C'est ce qui a conduit le Président Obama, dans son discours sur l'Etat de l'Union du 25 janvier 2011, à inciter les jeunes à s'engager dans la carrière enseignante.

Enfin, au Royaume-Uni, on constate qu'un quart des établissements de l'enseignement secondaire ne sont pas pourvus en professeurs de physique.

- insuffisance de la qualification des enseignants, dans les sciences notamment : le rapport des académies nationales américaines constate que 69 % des élèves scolarisés dans les classes allant du 5 e au 8 e degré 231 ( * ) se voient enseigner les mathématiques par des professeurs qui ne sont pas titulaires d'un diplôme en mathématiques. C'est la raison pour laquelle les académies nationales proposent que les 250 000 professeurs concernés puissent bénéficier d'un renforcement de leurs compétences au moyen du financement d'études complémentaires, qui leur permettraient d'obtenir des masters en sciences, en mathématiques ou dans les sciences de l'ingénieur. D'autres dysfonctionnements touchent directement la BS.

En tant que secteur émergent et ne bénéficiant pas d'une reconnaissance scientifique et institutionnelle confirmée, la BS est confrontée à une certaine frilosité académique. Aux États-Unis, Pamela Silver regrette ainsi que, à la différence du MIT, la Harvard Medical School ait négligé les relations entre l'université et les industriels, ce qui n'est effectivement pas de nature à favoriser les liens entre recherche fondamentale et recherche appliquée sur lesquels repose le développement de la BS. Pamela Silver a donc mis en place un programme destiné à modifier l'enseignement dispensé aux étudiants, s'appuyant davantage sur ce lien entre recherche fondamentale et application industrielle. Elle a également regretté le soutien trop faible du NIH pour la BS, accentué par la réduction des crédits accordés à l'enseignement et à la recherche, liée au contexte de crise économique et de réduction des dépenses publiques.

On retrouve cette même frilosité en France, puisque, comme on l'a vu, peu de projets ont obtenu le concours financier du CNRS ou de l'ANR, ce qui n'incite pas les étudiants à se diriger vers ce domaine encore trop peu reconnu et structuré. Une analyse récente de l'Alliance nationale pour les sciences de la vie et de la santé (Aviesan) 232 ( * ) confirme ce déficit d'attractivité pour la BS.

Ce rapport souligne que la BS n'est pas très attractive pour les biologistes et constate que le cloisonnement, plus fort en France qu'ailleurs, entre les disciplines, pénalise d'autant plus un domaine aussi pluridisciplinaire que la BS.

Le rapport relève aussi les limites de la formation des biologistes. La formation aux enjeux de la BS ou, plus largement, à des biotechnologies, est pratiquement inexistante, en dehors des écoles d'ingénieurs en biotechnologie. De plus, la plupart des biologistes restent focalisés sur des problématiques telles que les modalités de fonctionnement du vivant ou ses dysfonctionnements et les moyens d'y remédier. L'utilisation du vivant ou l'imitation du vivant à d'autres fins leur est, en général, peu familière et ne les attire pas. Le rapport souligne les défauts d'interface entre les disciplines : si l'interface entre la chimie et la biologie fonctionne bien pour les chimistes, l'inverse n'est pas vrai. Une fracture comparable existe entre biologistes et chimie de synthèse. La chimie repousserait et rebuterait les biologistes. Or, rappelle le rapport, une cellule est une entité chimique exerçant un foisonnement d'activités chimiques exceptionnelles dans la nature.

La réduction croissante de l'enseignement de la biochimie en France 233 ( * ) ne contribue pas à renforcer l'interdisciplinarité, d'autant que, de son côté, la communauté des chimistes affiche un scepticisme ancien et bien établi envers la biocatalyse 234 ( * ) .

Les reproches formulés à l'encontre des biologistes et des chimistes concernent également nos grandes écoles scientifiques, puisque l'on ne recense aucun chercheur en BS à l'Ecole Polytechnique, pas plus que dans les différentes écoles normales supérieures.

Au Japon, la BS suscite quelques réserves de la part des scientifiques. En effet, la définition même de la BS est sujette à de nombreux débats de la part des biologistes et bioinformaticiens.

La BS est parfois considérée comme une simple évolution de la biologie moléculaire à cause de la part prépondérante de cette dernière dans les protocoles opératoires. En outre, la recherche et le développement de nouveaux projets sont freinés par les difficultés culturelles des Japonais à mettre en oeuvre une approche multidisciplinaire. 235 ( * )


* 227 National Academy of Sciences, National Academy of Engineering, Institute of Medecine, « Rising above the Gathering storm revisited», 2010. Ce rapport revisite les analyses et les conclusions d'un précédent rapport de 2005 sur les causes de la perte du leadership des États-Unis dans les domaines de l'économie, de la science et de l'innovation, et les moyens d'y remédier.

* 228 Jean-Marie Rolland, «L'enseignement des disciplines scientifiques dans le primaire et le secondaire»

(Rapport AN n° 3061, déposé le 2 mai 2006).

* 229 Intervention lors de l'audition publique organisée le 12 octobre 2011 par Claude Birraux, Président de l'OPECST et par Jean-Yves Le Déaut, Vice-président de l'OPECST, « Quels outils pour une société innovante ?»

* 230 Intervention au colloque « Vérités scientifiques et démocratie », Assemblée nationale, 7 décembre 2011.

* 231 Le 5 e degré correspond à la classe de CM1 et le 8 e à la classe de 5 e du collège.

* 232 Alliance Aviesan, « Bases moléculaires et structurales du vivant », rapport précité, janvier 2011.

* 233 Les auteurs du rapport suggèrent que cette situation est imputable au souhait de ne pas décourager les étudiants.

* 234 La biocatalyse peut être définie comme l'accélération d'une réaction biochimique par une substance (biocatalyseur), qui n'est pas modifiée dans sa composition et sa concentration lorsque la réaction s'achève.

* 235 Eric Perrot, « La biologie synthétique au Japon », service pour la Science et la technologie de l'ambassade de France au Japon, 15 décembre 2011.