III. AUDITIONS DU 9 NOVEMBRE 2016

1. Me Alain Bensoussan, avocat, président de l'association pour les droits des robots et Me Marie Soulez, avocate spécialisée sur les TIC dans son cabinet

Un robot peut être défini comme une machine intelligente capable de prendre des décisions de manière autonome, maîtrisant son environnement et pouvant le modifier. Un robot est un composé d'algorithmes doté de capteurs et d'actionneurs. De fait, il faut distinguer les robots logiciels des robots physiques : les robots physiques sont des robots logiciels qui peuvent modifier leur environnement grâce à leurs capteurs et leurs actionneurs. La majorité des robots actuellement en circulation sont des robots logiciels ; cependant, en 2020, ils auront tous migré dans des coques dotées de capteurs, faisant d'eux des robots physiques.

Il existe un besoin juridique fort concernant le développement de la robotique à usage non militaire au niveau mondial. Certaines voies permettant de répondre à ce besoin furent identifiées dans le projet de rapport de la commission des affaires juridiques du Parlement européen contenant des recommandations à la Commission concernant des règles de droit civil sur la robotique rendu le 31 mai 2016. J'identifie pour ma part les points suivants, qui représentent un caractère prioritaire pour un développement juridiquement serein de l'intelligence artificielle et de la robotique.

§ Identification des robots . Les robots doivent être facilement identifiables, « immatriculés », par un nom, un prénom, un numéro IP, un numéro de contact, etc. Ce besoin impératif d'identification correspond au fait que les robots peuvent être considérés comme une espèce à part entière. En ce sens, il est nécessaire de créer un fichier centralisant les identités de chaque robot afin de garantir le contrôle humain sur leurs activités.

§ Définition des principes de fabrication . Il est essentiel que, comme l'a affirmé Bruno Maisonnier, P-DG d'Aldebaran et créateur du robot Nao, que les robots soient conçus « éthiques by design », des robots éthiques par nature. Pour cela, il faudrait notamment produire des chartes éthiques qui seraient imposées aux industries pour garantir cette fabrication éthique by design . Ces chartes éthiques pourraient par exemple comporter l'intégration dans le code source des robots les trois lois de la robotique 82 ( * ) formulées par Isaac Asimov dans Cercles vicieux (1942) et en les complétant, ces trois lois n'étant pas suffisantes. Si ces trois lois de la robotique comprennent de grandes limites, il est néanmoins nécessaire de s'en servir comme règles d'orientation.

§ Un droit des robots mondial. Il serait faux de penser que, du fait de son caractère mondial, tout encadrement juridique national du développement industriel des robots et de l'intégration des robots dans la société serait inutile et inefficace. Si un droit international des robots peut annuler ce type d'effet, un droit national des robots pourrait aussi bien devenir un standard mondial, à l'image des lois sur l'informatique et des lois sur la protection des logiciels.

§ Certification des produits robotiques. Il est possible d'envisager deux types de certifications : la certification par un contrôle de vérification des capacités et exerçant un contrôle au travers d'une commission, à l'image de Bureau Veritas par exemple ; ou une certification par déclaration. Il sera impératif de certifier les robots, et plus particulièrement les robots humanoïdes.

§ Documentation des algorithmes ( accountability of algorithms ). Tous les algorithmes doivent être documentés et disponibles au contrôle.

§ Traçabilité des robots. Assurer une traçabilité des robots est cruciale, afin qu'ils n'aient pas une complète autonomie. Les robots ne doivent pas pouvoir agir de manière anonyme ; il faut tracer leurs actions avant, pendant et après l'exécution de ces actions. La conservation des données tracées pourrait se limiter à une semaine, dans un souci de protection des données personnelles (car les robots ne vivent pas seuls). La traçabilité doit permettre d'identifier les erreurs et dangers (liés à la circulation de voitures autonomes notamment) tout en assurant la protection des données personnelles.

§ Responsabilité des robots. Il est important de distinguer la responsabilité vis-à-vis de la victime et la chaîne de responsabilité. Concernant la responsabilité vis-à-vis de la victime, il faut appliquer une responsabilité sans faute aux robots. Pour une fonction donnée, le robot est supérieur ; mais le robot est inférieur sur le plan multifonctionnel. Les robots entraîneront moins d'erreurs que les humains sur une fonction donnée. De fait, le robot assume une responsabilité dommage vis-à-vis de la victime. La législation du Nevada qui, sur le plan de la régulation des voitures autonomes NRS 482A notamment, est la plus avancée au monde, dispose qu'est responsable la plateforme d'autonomie ; il est possible d'aller plus loin en affirmant la responsabilité du robot. L'humain est responsable car il est libre ; la responsabilité vient de la liberté. Les personnes morales, elles-mêmes libres, se sont vu attribuer une responsabilité. De fait, il faut introduire dans la chaîne de responsabilité une responsabilité singulière pour les robots.

§ Modification de la loi n° 78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés. La modification de la loi informatique et liberté est nécessaire, notamment concernant les compagnons personnels. La loi n° 78-17 et le règlement (UE) 2016/679 excluent les activités purement personnelles ou domestiques : ainsi, un robot domestique n'est pas soumis aux dispositions de ces deux textes. Il est donc nécessaire de modifier ces textes afin de prendre en compte la robotique personnelle.

§ Création d'un droit à l'intimité numérique. Il existe une co-intimité entre le robot compagnon et son utilisateur qu'il faut protéger.

§ Création d'un archivage des cerveaux robotiques. Il serait important d'archiver les cerveaux des robots, sur le modèle des archivages bibliothécaires.

§ Droit à la transparence des algorithmes. Il est essentiel, non pas de comprendre l'algorithme, mais de comprendre ce qu'il fait faire au robot. Le robot ne doit pas pouvoir agir de manière opaque.

§ La loyauté des robots. Le robot ne doit pas se comporter de manière déloyale vis-à-vis de son utilisateur.

§ Création d'un droit à la compréhension. Le droit d'information et d'accès aux algorithmes est déjà prévu par la loi de 1978 ; il est cependant nécessaire de la renforcer par l'instauration d'un droit à la compréhension .

§ Personnalité juridique robot. Il est nécessaire de donner une personnalité juridique aux robots, afin qu'ils puissent assumer leurs responsabilités devant la loi. La création d'une personnalité juridique robot est essentielle. Les robots jouissant d'une certaine autonomie, le droit des objets ne pourra pas être appliqué.

§ Création d'un commissariat aux algorithmes. La création d'un commissariat aux algorithmes permettra la protection des données et des règles de fabrication et d'utilisation imposées aux industries.

§ Création d'un contrat-type d'assurance pour les robots.

§ Instauration d'une politique de label et de normes . L'instauration d'une politique de label et de normes permettrait aux industriels de développer leur activité en minimisant les contraintes.

§ Création d'un comité d'éthique.

2. M. Henri Verdier, directeur interministériel du numérique, ancien entrepreneur et spécialiste du numérique

La plus grande valeur dans l'économie numérique est l'intelligence partagée des individus, l'intelligence de la multitude . Les « GAFAMI » 83 ( * ) , ainsi que les autres entreprises majeures du numérique telles que Uber, parce qu'ils maîtrisent les stratégies de plateformes, suscitent, stimulent, concentrent et captent à leur profit l'intelligence de la multitude. L'économie numérique croît grâce à la valeur de la multitude .

Il n'y a pas nécessairement de frontière nette entre l'intelligence artificielle « forte » , qui aurait un comportement quasi-humain, et les systèmes experts qui s'apparentent davantage à de l'intelligence artificielle « faible » et qui se nourrit de l'apprentissage profond ( deep learning ) et des mégadonnées ( big data ). Les mutations actuelles relèvent davantage de la progression d'une intelligence systémique à tous les échelons. Il apparaît plus important d'envisager les évolutions de l'intelligence artificielle comme un continuum . Il y aura peut-être quelques pointes extrêmes dans l'avancée technologique de l'intelligence artificielle, comme celle d'un ordinateur battant l'intelligence humaine aux échecs, mais il est encore plus important de réaliser que de nombreux processus seront informatisés. Les petites forces seront peut-être plus importantes que les prouesses médiatiques de l'intelligence artificielle. Par analogie, le fait que l'essor prometteur de véhicules autonomes soit imminent n'empêche pas le fait que, chaque année, les constructeurs automobiles rajoutent des fonctions d'autonomie dans les voitures.

Il existe de nombreuses inquiétudes s'exprimant autour du développement de l'intelligence artificielle. Au-delà du fait qu'il y a une grande concentration des puissances des capacités, il n'est pas certain que l'humain puisse contrôler de manière complète les dynamiques internes d'une intelligence artificielle . Les procédures de régulation par la norme ne seront pas suffisantes pour contrôler les actions d'une intelligence artificielle. Quelques sécurités ne permettront pas non plus d'empêcher une intelligence artificielle de s'émanciper du contrôle humain. Une intelligence artificielle peut être auto-apprenante et innovante, et il faut donc être très vigilant dans la manière dont elle sera contrôlée.

Du fait de l'intelligence distribuée, des codes sources ouverts ( open source ), et de la logique des organisations de l'écosystème numérique, l'intervention de l'État dans le développement technologique et industriel de l'intelligence artificielle ne peut se faire au travers d'une planification d'objectifs, mais avec la stimulation de l'innovation . La Silicon Valley ne peut être rattrapée grâce à des décrets.

Il manque la diffusion d'une pensée éthique. L'avènement de systèmes d'intelligence artificielle va amener des questions neuves, et les solutions proposées ne font pas nécessairement consensus. Par exemple, le développement des voitures autonomes soulève la question du comportement adopté par le système informatique pilotant la voiture lorsque celui-ci sera confronté à un danger imminent d'accident mortel soit pour son passager, soit pour un usager plus vulnérable. Pour le moment, les nombreuses solutions proposées en termes de responsabilité d'usage et d'éthique n'obtiennent pas le consensus. En cela, une pensée scientifique, et aussi une pensée sociale, sont nécessaires pour doter le développement de l'intelligence artificielle d'un cadre éthique. L'efficacité n'est pas une éthique ; si un algorithme remplace et améliore le travail humain, il sera essentiel de vérifier qu'il ne crée par des effets indirects d'exclusion. Étant donné que l'intelligence artificielle s'invente actuellement dans un modèle économique simple, il n'y a pas de cas de conscience car il ne s'agit que de l'optimisation de techniques commerciales . Le rôle de l'État, pour sa part, est de constamment mettre en balance l'égalité, l'équité, la justice, la croissance et le chômage ; à l'heure actuelle, les inventeurs d'algorithmes ne sont pas formés à prendre de tels facteurs en considération dans la construction de leurs algorithmes.

3. M. Laurent Alexandre, président de DNA Vision, fondateur de Doctissimo, chirurgien-urologue

Le mouvement actuel en matière d'intelligence artificielle est que l'on se dirige vers un duopole entre les géants chinois et nord-américains . Il n'existe pas en France et en Europe d'acteurs de l'industrie du logiciel à la hauteur des géants chinois et nord-américains. La France et l'Europe ont des jeunes pousses prometteuses, un tissu industriel traditionnel et des chercheurs performants, mais elles sont reléguées au rang de consommateur et non de producteur de technologies.

La France et l'Europe sont des « colonisées numériques », parce qu'elles ne produisent pas de richesses à partir du numérique , privilégiant une approche appliquée à l'informatique, c'est-à-dire une approche de vente. Le véritable enjeu concernant la révolution numérique et l'émergence de l'intelligence artificielle n'est pas le code, mais la donnée. L'apprentissage d'une intelligence artificielle nécessite beaucoup de données, mais peu de logiciels. C'est en cela que la France est en train de manquer le virage de l'intelligence artificielle : la France possède les codeurs, mais elle n'a pas les données. Ce sont les géants du numérique et de l'intelligence artificielle, tout particulièrement aux États-Unis d'Amérique, qui détiennent les données. L'ensemble des données que tout utilisateur de services numériques connectés fournit quotidiennement nourrit et éduque gratuitement les intelligences artificielles des industries numériques chinoises et nord-américaines qui se trouvent en situation oligopolistique.

L'apprentissage du codage, notamment par les enfants, est une chose positive ; cependant, dans quinze ans, l'intelligence artificielle codera mieux et plus vite que les codeurs de niveau moyen. Il est important de donner une culture générale du code, mais le codage humain médiocre ne résistera pas à l'intelligence artificielle au-delà de 2025 .

Il est essentiel de mettre en place des plate-formistes de l'intelligence artificielle en Europe . L'Europe doit retrouver de l'oxygène entre les géants numériques chinois et nord-américains. Il est donc vital qu'apparaissent des plate-formistes européens, des acteurs qui produiront et recueilleront de gros volumes de données. Il serait trompeur de raisonner par branche concernant le développement de l'intelligence artificielle ; il ne faut pas « verticaliser » les approches de l'intelligence artificielle selon les secteurs, mais les « horizontaliser » .

En ce sens, il est impératif d'unifier le droit de l'information et la jurisprudence des organismes de CNIL européens , qui ne doivent pas exiger un objectif et imposer des limites au traitement des données. Un algorithme ne peut pas être traçable car il change en continu au fil du traitement des données ; un choix doit donc être effectué : l'émergence d'une industrie européenne de l'intelligence artificielle sera toujours bridée par la volonté de traçabilité des algorithmes . La régulation trop importante peut étouffer dans l'oeuf l'émergence d'une industrie européenne de l'intelligence artificielle et laisser un pouvoir oligopolistique dans les mains des industries chinoises et nord-américaines.

L'avènement de l'intelligence artificielle pourra entraîner des problèmes de requalification des industries dont la tâche sera remplacée par l'intelligence artificielle . Le populisme va croître car il n'existe actuellement pas de solutions et perspectives offertes aux actifs peu ou moyennement qualifiés, menacés par l'intelligence artificielle.

Il est essentiel de réorienter l'appareil productif rapidement. Pour l'instant, les systèmes d'intelligence artificielle sont des intelligences artificielles faibles qui ne sont pas spontanément complémentaires de l'humain ; le combat social sera le combat pour la complémentarité. Cependant, la complémentarité ne sera que temporaire : l'intelligence artificielle pourra remplacer, se substituer à l'humain quand l'apprentissage profond ( deep learning ) sera puissant et produira des intelligences artificielles fortes et conscientes d'elles-mêmes. L'intelligence artificielle pourra se substituer à l'humain lorsqu'elle aura intégré la reconnaissance de formes ( pattern recognition ), mais n'aura pas de sens commun tant qu'elle ne sera pas forte et consciente d'elle-même. L'intelligence artificielle représente un choc technologique récent et explosif auquel la société n'est pas préparée.

L'Europe ne pourra percer sur le marché des « GAFAMI » et des industries numériques chinoises dans l'état actuel des choses ; sa seule chance est d'identifier le « coup d'après » afin d'être en mesure de concurrencer les États-Unis et la Chine au niveau de l'économie numérique. Cependant, le monde politique est immature concernant ces questions . Il est en retard et dans le déni technologique, bien qu'il soit dépendant du numérique. Dans cette perspective, l'avènement du populisme pourrait être lié à l'essor de l'intelligence artificielle, car l'enjeu crucial sera de réorienter le tissu corporatif et industriel alors même que l'intelligence artificielle ne concernera pas toutes les branches d'activités en même temps .

4. M. Pierre-Yves Oudeyer, directeur de recherche Inria, directeur du laboratoire Flowers, président du comité technique des systèmes cognitifs et développementaux de l'IEEE (Institut des ingénieurs électriciens et électroniciens)

Je suis directeur du laboratoire Flowers , et je travaille sur un domaine qui s'appelle la robotique développementale et sociale . Nous visons les machines et les algorithmes comme des outils pour construire des modèles d'apprentissage chez l'humain. On utilise les algorithmes pour comprendre l'évolution cognitive des enfants. J'ai auparavant travaillé dans l'entreprise Sony, au sein d'un laboratoire de recherche fondamentale.

Il y a eu des avancées ciblées dans un sous-domaine de l'intelligence artificielle, qui s'appelle l'apprentissage automatique ( deep learning ). Ces avancées techniques récentes sont aussi associées à un champ original dans la recherche sur l'intelligence artificielle : ces avancées sont développées de manière massive, un peu comme un programme Apollo, à l'intérieur d'un très petit nombre de grandes entreprises du web (Google, Twitter, Facebook, Microsoft, IBM et Apple). Ces grandes entreprises ont construit ces cinq dernières années des laboratoires de recherche en intelligence artificielle de taille bien supérieure à tous les laboratoires académiques du monde, et dans lesquels ils aspirent la plupart des cerveaux des meilleures universités du monde. Dans ces laboratoires de recherche, ils font des avancées fondamentales très vite, mais ils sont aussi capables de les appliquer extrêmement rapidement dans des applications utilisées au quotidien par leurs consommateurs.

Les techniques de développement de l'intelligence artificielle ne sont pas si nouvelles ; ces techniques font de la reconnaissance de forme. La reconnaissance de forme peut se faire par de l'apprentissage supervisé, qui existe depuis très longtemps : étant donné une base de données avec d'un côté des images et de l'autre des étiquettes, les algorithmes vont trouver des régularités dans des bases de données pour, dans le futur, être capable de deviner une étiquette . Récemment, les chercheurs sont parvenus à faire marcher les algorithmes bien mieux qu'avant, tellement mieux que pour un certain nombre de tailles de reconnaissances, la machine est meilleure que l'humain.

La machine est meilleure que les humains, en ce qu'elle est plus discriminante, plus précise et plus efficace ou plus rapide que l'humain dans des cas particuliers . Par exemple, dans le monde médical, dans lequel les médecins doivent identifier des maladies à partir d'images, ou dans le domaine de l'astronomie, dans lesquels les astronomes identifient des structures de galaxies à partir d'images de télescopes, les algorithmes vont être capables, pour certains types d'images, de reconnaître des motifs plus rapidement et avec plus de précision que les humains, y compris les experts.

Dans un certain nombre d'applications, la combinaison de l'expertise humaine et de la machine est bien plus efficace que la machine seule ou que l'humain seul. D'un point de vue scientifique, il n'y a rien de nouveau, toutes les idées qui sont utilisées aujourd'hui étaient déjà présentes il y a une trentaine d'années. Il y a cependant deux choses nouvelles. D'une part, nous avons aujourd'hui à disposition de grandes bases de données avec les étiquettes, ce qui permet aux algorithmes de repérer des régularités qu'ils ne pouvaient pas repérer avec de plus petites bases. Ces bases de données sont le résultat de l'activité commerciale de ces grandes entreprises qui les construisent, et ont les moyens de les construire et de les entretenir. D'autre part, pour que les algorithmes repèrent des régularités, il faut faire des calculs énormes pour pouvoir traiter toutes ces bases de données . Jusqu'il y a peu de temps, les méthodes de calcul nécessaires n'étaient pas disponibles. Ce sont les organisations privées qui ont aujourd'hui cette puissance de calcul permettant de traiter l'ensemble des données de la base. L'utilisation de leurs bases de données leur permet de construire des algorithmes de reconnaissance de forme.

Pour ces entreprises, la valeur ajoutée ne se trouve pas nécessairement dans les algorithmes qu'elles ont mis au point, mais dans les bases de données sur lesquelles elles entraînent ces algorithmes. C'est ce qui permet à ces entreprises de publier un certain nombre de leurs algorithmes de manière ouverte ( open source ), parce que les données ont une application commerciale, et donc une valeur commerciale haute. Ces données ont beaucoup de valeur, et elles se monnayent.

Cependant, si ces systèmes sont puissants, ils ont des limites. Il est possible de faire de la reconnaissance de forme performante à partir de bases de données et des applications pertinentes, mais on est encore loin de l'intelligence humaine. L'intelligence artificielle est encore très « stupide » par beaucoup d'aspects.

Cette « stupidité » de l'intelligence artificielle peut être constatée notamment sur la reconnaissance d'image. En prenant deux images représentant toutes deux un camion avec quelques pixels de différence, l'oeil humain ne percevra pas la différence infime entre ces deux images et reconnaîtra une même forme de camion. Cependant, pour l'algorithme, la première image reconnaîtra qu'il y a 99 % de chances pour que ce soit bien un camion ; mais sur la deuxième image, il sera certain à 99 % de chances que c'est autre chose.

Cela signifie que ces algorithmes de reconnaissance ont des taux de réussite de 99,5 % sur la reconnaissance de forme, mais que les 0,5 % d'erreur sont des erreurs de sens commun et d'intuition énormes, qui sont incompréhensibles pour les humains . Les humains, grâce à leur intuition et à leur connaissance générale du monde acquise au cours de leur développement, sont éduqués pour ne pas faire ces erreurs stupides.

Les algorithmes générateurs des images que doivent reconnaître la machine essaient de prendre en défaut les algorithmes de deep learning . Ces algorithmes de deep learning , lorsqu'ils sont fixés dans les applications dans le monde réel, peuvent être la cible de hackers qui vont développer des stimuli qui seront présentés à ces machines afin de mal orienter la décision à prendre dans la tâche qu'elles effectuent. Ce type d'erreur peut notamment être retrouvé dans le cas des voitures autonomes, où les algorithmes de reconnaissance de forme sont utilisés afin de prévenir les accidents. Un algorithme pilotant un véhicule autonome peut en effet être amené à devoir prendre des décisions rapides après avoir reconnu la présence d'un danger sur la route, comme, par exemple, des enfants accourant subitement sur la chaussée. Cependant, la présence d'un panneau publicitaire en bord de chaussée présentant des images sera interprétée comme un piéton traversant la rue et pourra diriger de fait le véhicule contre un mur afin de sauver un maximum de vies. Ce type de méthode statistique ne permet pas de garantir que des erreurs énormes ne seront pas faites. On ne peut donc garantir que des erreurs graves ne soient pas faites du fait des confusions de représentation et d'interprétation des formes et images par une intelligence artificielle.

Lorsque le législateur essayera ces technologies, il devra effectuer un changement de paradigme pour essayer de se faire une idée de leur utilité ou non. Auparavant, dans le domaine des transports, les technologies étaient présentes pour aider les gens, et notamment dans le domaine de l'aviation dans lesquels cela fait bien longtemps qu'il y a des systèmes automatisés ; cependant, l'introduction de systèmes automatisés était soumise à une certification : on pouvait prouver que ce système ne ferait pas d'erreur. Aujourd'hui, il existe de nombreux autres algorithmes d'aide à la décision humaine dans des applications qui n'ont pas une culture de la sécurité comme c'est le cas dans le domaine de l'aviation. C'est ainsi le cas dans le domaine de la voiture, où il n'y a pas du tout cette culture de la sécurité et où ces systèmes d'information automatisés sont, de facto , déjà utilisés. Une réflexion similaire peut se faire dans le domaine de la médecine : en médecine, lorsqu'il est constaté qu'un médicament fonctionne sur 99 % des patients, ce même médicament peut avoir de graves effets sur les 1 % de patients restant.

Aujourd'hui, on ne réfléchit plus nécessairement en termes de sécurité, mais en termes de bénéfice/coût. Ainsi, pour le cas du médicament, l'interprétation du risque en fonction de la balance bénéfice/coût se base sur le calcul statistique du nombre d'années d'espérance de vies gagnées et du gain pour la sécurité sociale par rapport à ce qu'il fait perdre. Les algorithmes ne seront donc pas dans la perspective de prévenir tout risque à l'avance, mais d'effectuer un calcul bénéfice/coût afin de garantir le meilleur résultat possible. Cette perspective implique que, par exemple, dans le cas des voitures autonomes, un pourcentage de pertes puisse être toléré lorsque l'algorithme prend en considération la situation à laquelle il est confronté.

Dans l'état actuel des connaissances, les techniques d'apprentissage de reconnaissance de formes sont mauvaises pour apprendre en une seule fois à un algorithme. Il lui faut des séries d'exemples pour qu'un algorithme intériorise une reconnaissance de forme ou une notion.

En médecine, comme en développement de technologies, l'incertitude occupe une grande place dans le travail du chercheur . C'est en cela que la répétition des essais est primordiale à la vérification et à la validation du travail du chercheur.

Il existe d'autres utilisations de ces algorithmes, qui sont encore plus quotidiennes que dans les véhicules autonomes. On peut prendre l'exemple d'AlphaGo : les ingénieurs de DeepMind ont effectué un travail impressionnant avec le jeu de Go. Néanmoins, la défaite de la machine au jeu de Go montre les limites de la machine de la manière suivante : dans les deux premières parties, Lee Sedol est battu nettement, et à partir de la troisième partie, il fut capable d'adapter sa stratégie et d'équilibrer le jeu. L'algorithme n'était cependant pas capable de s'adapter sans avoir plusieurs millions de nouveaux exemples . C'est une différence fondamentale entre l'intelligence humaine et l'intelligence d'un système d'information. En outre, le système utilisé pour jouer contre Lee Sedol au jeu de Go ne serait pas capable de jouer aux dames contre un enfant, bien que les règles du jeu de dames soient bien plus simples à comprendre que celles du jeu de Go. Il faudra le reprogrammer entièrement pour qu'il soit capable de jouer au jeu de dames. Un algorithme pourra être très efficace pour résoudre un problème difficile, mais qui est très spécifique. L'algorithme ne peut s'adapter aussi vite que l'intelligence humaine, car il lui faut des millions de données et exemples pour qu'il s'adapte et comprenne de nouvelles choses.

À ma connaissance, ce type d'algorithmes est plutôt utilisé en médecine dans le cadre de l'aide au diagnostic et dans l'aide à la décision du traitement à prescrire. Ils ne sont cependant pas encore utilisés pour les actes chirurgicaux en eux-mêmes. Certains le sont aussi en génomique, afin de repérer des structures ou des patterns dans l'expression des gènes.

Un autre domaine dans lequel ces algorithmes sont beaucoup utilisés est celui des filtrages d'information : les moteurs de recherche, les systèmes de personnalisation des articles d'actualité, de plus en plus de sites web , des grands journaux, qui ne proposent pas à tous la même hiérarchie des articles. Ils choisissent la hiérarchie des titres et des articles de manière à correspondre aux préférences de l'utilisateur. Pour cela, ces algorithmes vont utiliser les clics des utilisateurs effectués auparavant comme des mesures des préférences de l'utilisateur, afin de détecter des régularités dans les articles consultés par chaque utilisateur.

Cela permet aux utilisateurs de trouver des informations pertinentes, mais le mauvais point est que ces algorithmes vont avoir tendance à « mettre la poussière sous le tapis » : de même qu'un enfant à qui on a demandé de ranger sa chambre fera disparaître la poussière sous le tapis, l'algorithme de filtrage d'information, en souhaitant satisfaire les préférences de l'utilisateur, va lui proposer uniquement les articles correspondant à ses opinions. La problématique de ce phénomène est que cela va contribuer à enfermer les utilisateurs dans une bulle d'information qui leur sera propre du fait des suggestions basées sur leurs préférences, et ainsi polariser les opinions. Cela peut engendrer des problèmes sociétaux et politiques fondamentaux, en particulier pour le développement des extrémismes.

La plupart des gens n'ont pas conscience qu'il y a des algorithmes derrière ces systèmes s'adaptant à leurs préférences. Il serait important que les gens soient éduqués à la compréhension des grands principes du fonctionnement de ces systèmes, pour leur permettre ainsi d'éduquer ces systèmes lorsqu'ils interagissent avec eux afin de ne pas s'enfermer dans une bulle d'information. Cependant, d'autres personnes connaissent très bien ces algorithmes et leurs effets, et vont les utiliser volontairement, comme ce fut par exemple le cas avec le logiciel de Microsoft « Tay » qui, à force d'indications visant à mal orienter l'apprentissage de l'algorithme par de nombreux utilisateurs, a publié sur le réseau Twitter des propos racistes. Cet événement est symptomatique du fait qu'il est possible de modifier le comportement de ces algorithmes qui feront à notre place des choix de filtrage d'information, ce qui soulève des questions.

Les grandes entreprises développant ces algorithmes ont pris conscience de ce problème, certaines d'entre elles ayant commencé à développer des algorithmes « adversario » pour contrer ces algorithmes de filtrage qui provoquent des bulles d'information. On pourrait dire que cela est une bonne chose, car cela montre que les entreprises développant ces algorithmes ont conscience du problème ; cependant, est-ce que la solution est de développer des algorithmes qui, pour votre bien, vont lutter contre d'autres algorithmes qui voulaient aussi initialement votre bien mais qui font votre mal ? Le souci est que la décision est déléguée aux algorithmes qui vont lutter les uns contre les autres, sans vraiment poser la question.

Les systèmes d'intelligence artificielle , présents dans les voitures autonomes et dans les systèmes de filtrage d'information, fonctionnent de manière très différente des humains, en particulier parce qu'ils sont spécialisés sur une seule tâche programmée à la main par un ingénieur . Cependant, les enfants humains n'apprennent pas du tout de cette manière ; l'apprentissage des enfants est d'abord dirigé par des systèmes de motivation qui sont internes à leurs cerveaux . Les enfants ont des systèmes de motivations extrinsèques, qui vont effectuer des activités car des éléments extérieurs les y poussent, comme une récompense offerte par les parents ; et ont aussi des systèmes de motivation intrinsèques, que l'on peut associer à la curiosité, et qui vont les pousser spontanément à explorer leur environnement. Il semble que l'évolution ait doté notre cerveau de circuits spécifiques de la curiosité qui non seulement nous poussent à explorer des situations nouvelles et surprenantes, mais qui nous procurent du plaisir dans la découverte et l'apprentissage.

Dans le cadre de nos recherches, nous avons essayé de modéliser ces mécanismes, le but n'étant pas de rendre les robots plus intelligents mais de voir comment rendre plus précis ces mécanismes d'apprentissage en les expérimentant sur des robots, et de fournir la théorie du fonctionnement de l'enfant et de l'humain. Les mécanismes de l'apprentissage humain sont tellement complexes que l'on ne peut les comprendre par de simples matrices cérébrales ; les mécanismes d'apprentissage humain ne peuvent être totalement appliqués à l'apprentissage automatique ( machine learning ). Le robot peut tester son environnement en faisant des expériences afin d'observer des régularités, engranger de l'information en effectuant des expériences et apprendre de ses erreurs. Les expériences menées sur l'interaction du système d'apprentissage, de son système d'exploration spontanée, des propriétés de son corps et de l'environnement permettent de fournir de nouvelles hypothèses concernant les enfants. Aujourd'hui, en collaboration avec des laboratoires de psychologie et de neurosciences, il est possible de faire des expériences nouvelles avec des humains et des animaux afin d'infirmer ou de confirmer certaines hypothèses théoriques.

Cependant, les systèmes d'intelligence artificielle développés dans ce type de laboratoire visent un but très différent que les systèmes d'intelligence artificielle développés par les grandes entreprises évoquées précédemment. Il ne s'agit pas ici de résoudre des problèmes d'ingénieurs, mais d' explorer les processus d'apprentissage et du développement .

Il ne s'agit pas de vendre un service qui serait commercialisé, mais cela ne veut pas dire qu'il n'y a pas des applications possibles. Par exemple, le laboratoire Flowers travaille actuellement sur des applications dans le domaine de l'éducation. Si l'équipe de chercheurs parvient à mieux comprendre certains processus de l'apprentissage, comme ceux liés à la curiosité, cela donnera des idées d'amélioration des systèmes pédagogiques et d'éducation. Cela pourrait également permettre de personnaliser les parcours d'apprentissage , et fournir des outils complémentaires au travail de l'enseignant. Un enseignant, face à trente élèves, pourra ainsi se voir fournir des outils lui permettant d'organiser la classe différemment et lui donnant les informations pour personnaliser son enseignement, ce qu'il ne peut faire mécaniquement pour trente élèves.

Ces exemples d'application sont d'ailleurs très différents des applications faites par les grandes entreprises développant des systèmes d'intelligence artificielle.

Il existe aussi des logiciels de réadaptation ou de remobilisation pour des enfants souffrant d'un handicap. Ce type d'application n'est pas exploité dans le laboratoire Flowers en particulier, mais il y a des collègues chercheurs qui se penchent sur ce type de recherche. Cependant, leurs applications visent les enfants, mais aussi les personnes âgées. Par exemple, le laboratoire Flowers est actuellement en train de travailler sur un projet avec l'ENST Bretagne à Brest autour des personnes âgées ayant besoin de rééducation physique et de kinésithérapie. Si la personne doit faire des mouvements physiques particuliers, le plus grand problème sera la motivation : à quel point fera-t-elle ses exercices sérieusement quand elle sera rentrée chez elle ? Avec ce projet, nous essayons de développer des technologies et des robots qui vont jouer un rôle de coach pour encourager les personnes âgées lorsque le kinésithérapeute n'est pas à côté d'elles.

Ces robots de soutien sont mis au point avec des enseignants pour notre projet porté sur l'école, et un enseignant a même été recruté afin de le mettre au coeur du développement du projet. Le laboratoire travaille très étroitement avec les écoles, les médecins et les associations de patients dans nos différents projets.

Nos collègues de Brest travaillent avec des diplômés formés à l'université dans des formations paramédicales, mais qui ne sont ni des médecins ni des kinésithérapeutes. Ces diplômés connaissent néanmoins parfaitement bien la morphologie et la biologie du corps humain, et sont capables d'interagir sur des fonctions particulières, soit pour compenser une déficience morphologique, soit pour améliorer le fonctionnement du corps pour des personnes en réadaptation fonctionnelle. Cependant, il existe également dans le domaine de l'éducation un certain nombre de spécialistes sur le terrain qui ont énormément de connaissances pratiques et qui sont là en complément des équipes éducatives.

Il est important de se demander ce que peut faire la France pour tirer parti de ces technologies. Il y a selon moi deux défis à relever. Tout d'abord un défi sur le long terme , le défi de l'éducation , qui est fondamental. L'éducation doit commencer dès le plus jeune âge en enseignant les principes fondamentaux de l'informatique. C'est ce qui est actuellement en train d'évoluer, avec l'intégration dans les programmes de l'école primaire de notions relatives au monde de l'informatique. Ensuite, sur le court terme, il y a un défi d'équilibre entre le privé et le public . La plupart des avancées sont faites par un petit nombre de grandes entreprises disposant de laboratoires qui attirent les meilleurs chercheurs et étudiants des universités les plus prestigieuses au monde. Le défi majeur sur le court terme est donc le rééquilibrage des forces de recherche entre les laboratoires publics et les laboratoires privés.


* 82 Un robot ne peut porter atteinte à un être humain, ni, en restant passif, permettre qu'un être humain soit exposé au danger ; un robot doit obéir aux ordres qui lui sont donnés par un être humain, sauf si de tels ordres entrent en conflit avec la première loi ; un robot doit protéger son existence tant que cette protection n'entre pas en conflit avec la première ou la deuxième loi.

* 83 Acronyme désignant les entreprises de l'économie numérique nord-américaines les plus importantes en termes de chiffre d'affaire : Google, Apple, Facebook, Amazon, Microsoft et IBM.

Les thèmes associés à ce dossier

Page mise à jour le

Partager cette page