II. AUDITIONS DU 8 NOVEMBRE 2016
1. M. Marc Mézard, directeur de l'École normale supérieure (ENS)
Une des grandes évolutions à prévoir sera l'impact des sciences informatiques, de l'intelligence artificielle et de la science des données sur le vaste champ des sciences humaines et sociales, notamment sur les aspects éthiques. De nombreux autres domaines, comme la médecine, seront également concernés par étape par l'intelligence artificielle.
L'intelligence artificielle est un domaine dans lequel la frontière entre la recherche fondamentale et la recherche appliquée dans le monde industriel est très poreuse . Les problèmes posés par les industriels sont des problèmes de recherche fondamentale. Il existe un besoin énorme de « bras » à fournir pour le tissu scientifique et le tissu économique, les établissements d'enseignement supérieur devant relever le défi de fournir ces « bras » à la fois du côté de la recherche et du côté de la formation.
Le problème de l'emploi face aux enjeux de l'intelligence artificielle est à la fois économique et européen . Il est impératif que s'enclenche une dynamique universitaire qui permette d'attirer et de stabiliser des jeunes talents pour alimenter les entreprises européennes du numérique. L'effort fourni actuellement doit s'intensifier concernant l'intelligence artificielle. Le développement de l'intelligence artificielle n'est pas une incrémentation ; c'est un véritable changement de paradigme d'un point de vue scientifique et industriel . En cela, la question du développement des méthodes des algorithmes est fondamentale. Sur ce plan méthodologique, la France est très bien placée. Cependant, de nombreux autres enjeux cruciaux doivent être pris en compte dans la recherche, notamment concernant les données et l'éthique.
Bien que les champs disciplinaires puissent éventuellement être redécoupés compte tenu des changements liés à l'intelligence artificielle et aux mégadonnées ( big data ), il demeure que l'émergence de nouveaux champs disciplinaires est incrémentale et nécessite le développement de nouveaux codes culturels. Cela implique de créer des instituts ou des centres où cohabitent des étudiants et chercheurs de différents champs disciplinaires, permettant une émulation culturelle favorisant l'interdisciplinarité et l'émergence de nouveaux champs disciplinaires.
Cependant, l'émergence d'un nouveau champ disciplinaire ne peut être décrétée ; elle est conditionnée par le temps nécessaire pour la formation. Il est important que les scientifiques restent attachés à leur discipline initiale qui possède ses questions d'intérêts et d'évaluation. Si les scientifiques sont détachés de leur communauté, l'interdisciplinarité et la création de nouveaux champs disciplinaires ne peuvent pas fonctionner. En revanche, l'interdisciplinarité et l'apparition de nouveaux champs académiques pourraient être favorisés par la mise en avant de l'importance du sujet de l'intelligence artificielle et l'élaboration des projets nécessitant des compétences interdisciplinaires, au travers d'objectifs scientifiques et politiques.
Dans cette perspective, la participation de la puissance publique est essentielle . Encore une fois, l'apparition de nouveaux champs ne se décrétera pas mais s'effectuera au travers d'initiatives, de projets et de programmes scientifiques proposés notamment par les pouvoirs publics qui devront accompagner ces évolutions majeures.
L'abaissement de la barrière entre recherche fondamentale et recherche appliquée en entreprise est très perceptible dans le domaine des jeunes entreprises émergentes du numérique . La barrière à franchir pour créer une entreprise dans le domaine de l'intelligence artificielle et, de manière plus générale, dans le domaine des sciences et technologies de l'information et de la communication, est beaucoup moins élevée que celles existant dans des processus industriels traditionnels. En cela, il n'est pas rare que des anciens élèves de l'ENS, qui n'est pourtant pas spécifiquement tournée vers le monde de l'entreprise, intègrent des incubateurs et fondent des entreprises tournées vers les sciences et les technologies numériques.
2. M. Raja Chatila, directeur de recherche au Centre national de la recherche scientifique (CNRS), directeur de l'Institut des systèmes intelligents et de robotique (ISIR)
Le fonctionnement de la robotique présente certaines différences par rapport à celui de l'intelligence artificielle. Dans la perspective de l'étude de la robotique et des systèmes intelligents, la machine est considérée comme matérielle, et non un logiciel effectuant des opérations ou un algorithme fonctionnant à partir de données . L'utilisation du qualificatif « matérielle » signifie que la machine physique interagit directement et de manière automatique avec son environnement . La différence principale existant entre la robotique et l'intelligence artificielle est issue de la complexité de l'interaction avec la réalité qui implique que les problèmes traités ne sont pas totalement abstraits dans un monde virtuel ; la réalité est porteuse de complexité, d'incertitude, de problématiques liées à la perception d'un environnement complexe qui évolue indépendamment du système et de difficultés d'interactions physiques et matérielles.
De fait, la problématique de la robotique est plus vaste que celle de l'intelligence artificielle, puisque la recherche en robotique doit tenir compte de la perception, de l'action et du mouvement. Les machines sont munies de capteurs afin de percevoir l'environnement, et sont également munies d'actionneurs pour se déplacer et agir sur cet environnement. Ces capteurs, qui extraient des données, doivent permettre de transformer ces données en connaissances pour que la machine puisse décider et agir. L'acte de décision et la capacité d'apprentissage sont permis par des logiciels, impliquant que les ordinateurs sont physiquement des parties prenantes de la machine. Une machine peut donc disposer de capacités de perception, de mouvement, de prises de décision pour décider de ses actions, de communication et d'interaction pour évoluer dans un environnement humain, et d'apprentissage qui lui permettent d'appréhender la complexité du monde.
Le robot est le paradigme de l'intelligence artificielle « encorporée » - je préfère ce mot à « incorporée », cela correspond plus à l'anglais embodied . Le robot a besoin de la prise de décision et des capacités d'anticipation et d'action d'une intelligence artificielle pour construire ses raisonnements sur les moyens et les contraintes qui permettent ses mouvements. Du fait de la complexité du monde, le robot est construit de manière simple et son système peut se complexifier ensuite au fil de son apprentissage.
La recherche en robotique a débuté de deux manières différentes. D'un côté, la recherche en robotique a été motivée par l'industrie, et plus particulièrement l'industrie automobile qui avait besoin de placer sur ses chaînes de production des robots destinés à effectuer des mouvements répétitifs et rapides. De l'autre côté, les premières réflexions menées sur la notion d'intelligence artificielle et la question posée par Alan Turing sur la capacité des machines à penser ont entraîné le lancement de programmes de recherche en intelligence artificielle et, à partir des années 1960, en « robotique intelligente ». Ce n'est que dans les années 1980 que la recherche en robotique et la recherche en intelligence artificielle se sont distinguées, la robotique s'intéressant davantage à l'interaction de la machine avec son environnement et aux représentations probabilistes. Elles se rapprochent à nouveau dans la période récente.
En matière de sécurité, les robots comprennent toujours un bouton rouge, c'est bien mais c'est déjà trop tard, il faut tout prévoir pour ne pas en arriver là. L'état du système doit être constamment observé et il faut pouvoir détecter toute déviance avant l'arrivée des problèmes.
Sur le projet transhumaniste, il faut voir que derrière ces discours, nous avons des vues de l'esprit qui n'ont rien d'opérationnelles, elles sont en réalité des idéologies, qu'on cherche à imposer pour gommer les différences entre l'humain et le non-humain. En tant que roboticien, je ne peux que m'opposer à cela.