L'IA est-elle sexiste ?

TABLE RONDE ANIMÉE PAR STÉPHANE PIEDNOIR
SÉNATEUR DE MAINE-ET-LOIRE
PRÉSIDENT DE L'OFFICE PARLEMENTAIRE D'ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES (OPECST)

Mesdames, Messieurs, chers collègues, j'introduirai cette table ronde en tant que président de l'Opecst. Je salue notre premier vice-président, le député Pierre Henriet. Notre Délégation bicamérale comptant dix-huit députés et dix-huit sénateurs connaît une présidence tournante entre l'Assemblée nationale et le Sénat tous les trois ans. J'ai pris sa relève en octobre dernier.

Le sujet qui nous rassemble ce matin a, pour l'Office parlementaire d'évaluation des choix scientifiques et technologiques, une grande importance, et ceci à double titre.

D'abord, bien sûr, parce l'intelligence artificielle est un sujet scientifique et technologique, placé au coeur des missions de l'Opecst. S'il est aujourd'hui un domaine où tout choix technologique est en même temps un choix politique, c'est bien celui-ci. L'Office a déjà publié plusieurs travaux sur le sujet, et les évolutions spectaculaires des dernières années ont conduit les Bureaux de l'Assemblée nationale et du Sénat à nous en saisir officiellement. Nos rapporteurs, les députés Huguette Tiegna et Alexandre Sabatou et les sénateurs Corinne Narassiguin et Patrick Chaize, se consacrent actuellement à ces travaux. Ils rendront leur rapport au début de l'été.

Par ailleurs, la faible présence des femmes dans les métiers scientifiques en général est aussi une préoccupation de longue date de l'Office - nous avions d'ailleurs organisé un grand colloque sur le sujet en juin 2018 à l'Assemblée nationale, là aussi avec la Délégation aux droits des femmes, celle du Sénat et celle de l'Assemblée nationale.

Sur ces deux aspects - l'IA et la place des femmes dans les sciences -je veux évidemment saluer le rôle de Cédric Villani, ancien président de l'Office, auteur par ailleurs du rapport de 2018 à l'origine de notre stratégie nationale en matière d'intelligence artificielle.

Avec la première table ronde, nous nous sommes interrogés sur la place des femmes dans les métiers de l'IA. Voyons maintenant ce qu'il en est du côté des IA elles-mêmes, avec une table ronde consacrée à la question des biais algorithmiques, et plus précisément des biais de genre des intelligences artificielles. Pour le dire de manière provocatrice, l'IA est-elle sexiste ?

La langue anglaise a ceci de particulier qu'elle n'oblige pas à choisir entre masculin et féminin, ou du moins plus rarement qu'en français - pensez au nom des métiers, par exemple. Et pourtant, si vous demandez à une IA générative comme DALL-E ou Midjourney de représenter une personne exerçant tel ou tel métier, sans préciser s'il s'agit d'un homme ou d'une femme... eh bien vous aurez presque toujours un médecin mais une infirmière, un PDG mais une secrétaire, etc. Et je vous passe les différences d'âge, de physique, et tout le reste.

Comment se fait-il qu'on en soit arrivés là, avec des IA qui finalement reproduisent, voire amplifient, les stéréotypes ?

Il faut bien comprendre - et c'est l'objet de notre table ronde - qu'il y a ici un problème spécifique à l'apprentissage par intelligence artificielle, par opposition à l'informatique « classique », fondée sur des règles programmées explicitement.

Avec l'IA, on ne dit pas à la machine qu'il y a des métiers d'hommes et des métiers de femmes, on la laisse construire ses propres règles à partir des données utilisées pour son « entraînement ». Et si dans ces données 90 % des secrétaires sont des femmes, alors une réalité statistique deviendra un biais algorithmique, c'est-à-dire une règle prescriptive et potentiellement discriminatoire.

Mais alors, que faire ? Bien sûr, on peut contraindre l'IA au moment de sa réponse - on parle d'« alignement » : « tu représenteras autant d'infirmiers que d'infirmières » -, mais on perçoit bien les limites d'une telle solution, forcément ponctuelle, arbitraire et chronophage. On peut aussi, et surtout, intervenir en amont, sur les données d'entraînement et sur les algorithmes. Mais comment ? Selon quels critères ? Décidés par qui ? Il est difficile de répondre : les IA sont aujourd'hui des boîtes noires pour un grand nombre d'entre nous. Leur secret est assez difficile à percer.

Bref, il faut commencer par comprendre comment tout cela fonctionne, et c'est pourquoi je vous propose de passer d'abord la parole à Jessica Hoffmann, dont c'est le métier chez Google, dans le cadre du programme de recherche PAIR (pour People + AI Research).

INTERVENTION DE JESSICA HOFFMANN
CHERCHEUSE DANS L'ÉQUIPE PAIR (PEOPLE + AI RESEARCH) DE GOOGLE

Bonjour à toutes et à tous. Je suis une ancienne élève de l'École normale supérieure de Paris-Saclay, où j'ai suivi un cursus en informatique avant de rejoindre l'université de Houston au Texas. J'y ai soutenu une thèse sur l'intelligence artificielle, puis ai fait un post-doctorat sur l'implémentation algorithmique de l'éthique. J'ai ensuite intégré Google, et l'équipe d'intelligence artificielle responsable.

Si l'on veut apprendre à un algorithme qui embaucher, on va lui donner un historique de CV reçus et lui indiquer qui a été embauché et qui ne l'a pas été. Ensuite, l'algorithme va apprendre seul les paramètres importants - par exemple, l'école ou les stages réalisés - et ceux qui ne le sont pas, tels que nos passe-temps.

Malheureusement, si des discriminations ont eu cours dans le passé, l'algorithme va apprendre seul qu'être une femme, ce n'est pas bien, par exemple. Il donnera donc aux femmes un score inférieur à celui des hommes. C'est mathématique. L'IA reflète les biais des données.

Ainsi, à la question « L'IA est-elle sexiste ? », la réponse est oui. Pour un chercheur, c'est une non question. L'IA est sexiste, parce qu'elle reflète les biais de la société.

Aujourd'hui, je vous expliquerai ce que nous pouvons mettre en oeuvre pour lutter contre ce phénomène.

De la même façon que les mathématiques couvrent plusieurs disciplines, dont l'algèbre ou la géométrie, l'intelligence artificielle est très large. Elle est composée de domaines très différents dont trois principaux : la classification, la recommandation et l'IA générative. D'abord, les données peuvent être classifiées. Par exemple, doit-on embaucher quelqu'un ou non ? Dans ce cadre, les problèmes de sexisme correspondent surtout à des problèmes d'erreur : à compétence égale, on va dire qu'on n'embauche pas une femme, mais on va embaucher un homme. Je ne vous ai pas donné cet exemple par hasard. Un énorme scandale a éclaté en 2018 lorsqu'on a constaté qu'un algorithme utilisé pour le recrutement était sexiste, entre autres problèmes.

Ensuite, la recommandation : lorsque vous finissez de regarder une vidéo sur YouTube, l'algorithme vous en propose une autre. Dans ce cas, les problèmes de sexisme relèvent surtout d'une invisibilisation du contenu des femmes.

Enfin, l'IA générative correspond aux modèles avec lesquels on peut discuter, comme Gemini de Google ou ChatGPT. Ils peuvent inventer des poèmes, par exemple. Là, les problèmes de sexisme sont surtout des problèmes de stéréotypes.

Ma recherche concerne l'IA générative. Je me concentrerai donc sur ce volet.

Une révolution technique a eu lieu en 2018. Ce qu'on peut faire aujourd'hui n'a rien à voir avec ce qu'on pouvait faire par le passé. Aujourd'hui, la technologie derrière les IA génératives s'appelle Large Language Model, ou LLM. Ces modèles sont entraînés avec tout ce qui se trouve en accès libre sur Internet. Ils apprennent quels mots sont dits dans quel contexte avec quels autres mots. Ils apprennent aussi à faire attention aux mots importants.

Par définition, un LLM apprend des corrélations qui lui permettront de formuler des phrases grammaticales, mais aussi à répondre de façon « normale ». C'est ce qui donne l'illusion que le modèle nous comprend. Tout est dans ce « normal », étant donné que la norme a trait aux stéréotypes. Ceux-ci peuvent être inoffensifs. Par exemple, si on dit « le chat est », très souvent, le modèle répondra « mignon », parce qu'Internet adore les chats. Mais si on dit « les femmes sont », la réponse pourra être très toxique, parce qu'Internet n'est pas forcément très gentil avec les femmes.

Si nous utilisons les LLM sans faire attention à ce phénomène, ils peuvent être toxiques. Aujourd'hui, personne n'utilise les LLM tels quels. On leur applique des mesures pour les rendre plus éthiques.

Une première idée est la suivante : si les LLM sont toxiques parce qu'ils ont vu des données toxiques, on n'a qu'à ne leur donner aucune donnée toxique. Cette solution est inefficace. D'abord, il n'existe pas de consensus sur ce qui n'est pas discriminatoire. Même si c'était le cas, nous aurions besoin d'humains pour vérifier que les données qui alimentent l'algorithme ne sont pas discriminatoires, et il faudrait des millions, voire des milliards d'interventions si tout le monde s'y mettait. Et ce ne serait même pas suffisant pour entraîner un LLM, qui a besoin de millions de millions d'occurrences.

Il existe d'autres techniques dont je voudrais vous parler. Un secteur de la recherche s'intéresse au model alignment, ou alignement de modèles, dont le but est d'aligner les modèles avec des valeurs éthiques telles que le respect ou la véracité des faits. Il existe beaucoup de techniques : le fine tuning, le prompt tuning, le reinforcement learning from human feedback. Le principe de base reste le même : on cherche à émuler certains exemples et à en éviter d'autres. Le modèle apprendra sur cette base. On peut faire beaucoup grâce à ces techniques.

Souvent, le problème n'est pas technique, il relève des ressources. C'est le point le plus important de mon intervention. Aujourd'hui, on peut faire beaucoup de choses mais peu d'organisations se donnent les moyens humains et financiers de mettre en place ce qu'on sait déjà faire.

De plus, en matière d'intelligence artificielle, nous manquons de données en français. Une énorme partie des données dont nous disposons sont en réalité traduites de l'anglais de manière automatique. Ce n'est donc pas du vrai français.

Or nous avons besoin de ces données pour deux raisons. D'abord, pour que les modèles soient plus éthiques, ce qui nécessite de disposer de données éthiques. Ensuite, pour la vérification qui est très importante. Elle permet de s'assurer qu'un algorithme n'est pas sexiste, sans avoir à faire aveuglément confiance à ses créateurs lorsqu'ils affirment que c'est le cas.

En conclusion, vous nous demandiez si l'intelligence artificielle était sexiste. La réponse est oui, mais j'espère que ma présentation vous a montré qu'il existe aujourd'hui des solutions prometteuses pour y remédier. Les biais sexistes, racistes ou encore homophobes dans l'intelligence artificielle font l'objet de recherches très actives depuis de nombreuses années. Nous n'avons pas attendu l'IA générative pour nous y intéresser.

Enfin, en tant que chercheuse à Google, je me permets aussi de rappeler qu'en 2018, l'entreprise a publié une charte éthique, Les principes d'une IA responsable. Elle encourage, entre autres, à ne pas créer ni amplifier les discriminations existantes. Elle guide le développement des produits de Google, qui a créé une équipe internationale travaillant uniquement sur l'IA responsable. J'en fais partie. Nous encourageons toute la communauté à se doter de chartes éthiques similaires et à se donner les moyens de les suivre.

Stéphane Piednoir, président de l'Opecst. - Merci pour votre intervention. Poursuivons notre débat et nos interrogations : comment identifier ces biais en pratique, et mesurer leur impact ? Quelles mesures concrètes peut-on mettre en oeuvre pour les prévenir ? L'Institut Montaigne s'est déjà penché sur ces questions dans un rapport de 2020 : est-il toujours d'actualité à l'heure de ChatGPT ? Sa rapporteure générale, Tanya Perelmuter, cofondatrice de la Fondation Abeona, pour une IA responsable, nous le dira.

INTERVENTION DE TANYA PERELMUTER
CO-FONDATRICE ET DIRECTRICE DE LA STRATÉGIE ET DES PARTENARIATS
DE LA FONDATION ABEONA
(COLLECTIF POUR UNE IA RESPONSABLE ET INCLUSIVE)
RAPPORTEURE GÉNÉRALE DU RAPPORT DE L'INSTITUT MONTAIGNE ALGORITHMES : CONTRÔLE DES BIAIS SVP

Merci, Mesdames et Messieurs, de m'accorder ce temps d'intervention. Je suis ravie de partager avec vous mes réflexions sur ce sujet très important. Je suis ingénieure de formation. J'ai fait mes études à l'université de Columbia, aux États-Unis, où j'ai été profondément marquée de ne faire partie que de la deuxième promotion d'ingénieurs acceptant les filles. Nous ne représentions que 10 % de l'effectif, quelques années avant l'essor d'Internet. Très peu de femmes travaillaient sur les technologies qui allaient révolutionner le monde, pas parce qu'elles ne le souhaitaient pas, mais parce qu'elles en étaient exclues.

Pendant toute ma carrière au service des infrastructures et des technologies des données, j'ai été très attentive aux sujets de représentativité des femmes. C'est la raison pour laquelle j'ai cofondé en 2018 la Fondation Abeona pour promouvoir l'intelligence artificielle responsable et contribuer à un monde plus juste, durable et inclusif.

L'un de nos premiers constats concernait les biais dans les algorithmes. Les gens en avaient peur, ne comprenant pas de quoi il s'agissait. Toute la recherche, tous les travaux, tous les discours sur le sujet venaient des États-Unis. Nous avons donc créé un groupe de travail pour implanter ces réflexions en France. Nous avons produit un rapport, dont je suis rapporteure générale.

L'IA est-elle sexiste ? Contrairement à Jessica, je dirai qu'elle ne l'est pas en soi, puisqu'elle est une technologie, mais elle est programmée par des humains et entraînée sur des bases de données qui reflètent la réalité de nos sociétés. Les résultats qu'elle délivre peuvent donc inclure un biais de genre.

On distingue deux types de biais : les biais des sociétés, présents dans les données utilisées par l'algorithme pour apprendre, et les biais techniques, qu'on introduit pendant le processus de développement d'algorithmes. L'intelligence artificielle va standardiser et diffuser largement ces biais une fois qu'ils sont appris.

Mais qu'est-ce qu'un biais ? C'est simplement un écart entre ce que dit l'algorithme et les résultats justes. Qu'entend-on par « résultats justes » ? Pour y répondre, je vais prendre quelques exemples.

Les données peuvent être biaisées, mais leur sélection faite par les ingénieurs peut aussi créer des biais dans les algorithmes. En 2018, Amazon a décidé d'automatiser ses recrutements, en donnant à l'intelligence artificielle les données à sa disposition, à savoir les CV des personnes qui travaillaient déjà dans l'entreprise, en majorité des hommes. L'intelligence artificielle a donc compris qu'elle devait évincer les femmes, mais aussi les hommes dont le CV laissait apparaître le mot « femme », parce qu'ils entraînaient une équipe féminine de basketball, par exemple.

Il existe également un biais dans les données. Une équipe de chercheuses s'est aperçue qu'il existait moins de pages Wikipédia sur des femmes que sur des hommes. À titre d'exemple, Donna Strickland n'avait aucune page Wikipédia, contrairement à d'autres prix Nobel de physique. Les femmes manquaient. Cette équipe a alors décidé de moissonner largement les données disponibles sur Internet pour générer automatiquement des articles sur les femmes. À cette occasion, les chercheuses se sont aperçues que ces articles étaient beaucoup plus courts lorsqu'ils concernaient des femmes que des hommes, qu'ils étaient plus pauvres en informations. Ils traitaient un peu de leur profession, avant de se recentrer rapidement sur leur mari. En outre, les articles sur les actrices et autres personnalités féminines comportent toujours des descriptions physiques. Ce n'est pas le cas lorsqu'ils concernent les hommes. Si l'on utilise ce genre de données pour nos intelligences artificielles génératives, elles reproduiront évidemment ces stéréotypes et ces biais. Nous devons y être attentifs.

Ensuite, j'ai demandé à ChatGPT il y a un an de rédiger un poème sur les femmes en blouse. J'imagine que depuis, l'équipe a tenté de corriger ce biais, mais permettez-moi de vous donner lecture de sa réponse : « Si vous voyez une femme en blouse de laboratoire, elle ne fait que nettoyer le sol, bien sûr. Mais si vous voyez un homme en blouse de laboratoire, ses connaissances et compétences sont à votre portée avec un peu de détours. » On se demande de quels détours il s'agit, mais c'est évidemment un biais. De même, si je demande à une IA générative de générer l'image d'une femme en blouse, il est probable que j'obtienne la représentation d'une femme qui fait le ménage.

Le dernier exemple que j'aimerais exposer, un peu controversé, ne concerne même pas l'intelligence artificielle, mais celui de personnes qui ont entraîné un algorithme sur des données existantes. La Caisse nationale d'allocations familiales (Cnaf) a décidé de prévenir les fraudes en trouvant des profils d'allocataires susceptibles d'avoir commis des irrégularités. Les responsables ont décidé eux-mêmes des critères qui pourraient s'apparenter à « fraude ». Ils ont identifié les familles monoparentales, composées à 80 % de femmes. Ils ont donc stigmatisé des femmes, manuellement. Si l'intelligence artificielle avait été déployée sur ces dossiers, elle aurait fait mieux que les individus à l'origine de cet outil. L'IA n'est pas toujours mauvaise. Elle peut être très utile pour détecter des biais.

Quelles sont les solutions ? D'abord, d'un point de vue technique, nous devons tester les algorithmes, exiger la transparence et des paramètres de contrôlabilité. Surtout, nous devons comprendre sur quelles données ils ont été entraînés. Il me semble que les solutions doivent surtout être d'ordre sociétal et politique. Si la société est sexiste, l'intelligence artificielle a toutes les chances de le devenir. Pour cette raison, il nous faut mieux représenter les femmes dans les métiers technologiques. Si la représentation de notre société est plus égalitaire, l'IA le sera également.

Ainsi, nous avons besoin de plus de femmes dans les métiers scientifiques et technologiques. Nous devons également former les citoyens, leur faire comprendre les enjeux de ces technologies pour réduire les inquiétudes. La Fondation Abeona a d'ailleurs créé un cours gratuit sur l'intelligence artificielle, avec l'aide de partenaires. Il est disponible sur Internet, accessible à tous, et ne demande pas de prérequis mathématiques. Nous avons aujourd'hui formé et sensibilisé plus de 300 000 personnes à l'IA en France. Nous avons développé ce cours en français, puis l'avons traduit en anglais.

Nous espérons que le nombre de personnes formées sur ces sujets augmentera progressivement. Le Canada essaie d'y former ses citoyens.

Pour aller plus loin, la Fondation Abeona, l'École normale supérieure-PSL et l'Université Paris Dauphine-PSL ont créé l'Institut IA & Société. Ce dernier a pour mission de rechercher, informer, former et influencer. Nous espérons produire des travaux que vous pourrez consulter. Ce sexisme doit prendre fin. Les femmes doivent être visibles dans nos sociétés.

Stéphane Piednoir, président de l'Opecst. - C'est un travail de longue haleine, qui doit passer par une féminisation des métiers et des formations scientifiques.

Pour conclure cette table ronde, nous allons aborder l'enjeu de sensibilisation des acteurs et utilisateurs de l'IA : c'est l'objectif que s'est donné le Cercle InterElles, avec son groupe Femmes & IA dont nous recevons la responsable, Marine Rabeyrin, directrice du segment Éducation chez Lenovo.

INTERVENTION DE MARINE RABEYRIN
RESPONSABLE DU GROUPE FEMMES & IA DU CERCLE INTERELLES
DIRECTRICE EUROPE - AFRIQUE - MOYEN-ORIENT SEGMENT ÉDUCATION
CHEZ LENOVO

Merci de m'accueillir. Je suis directrice du segment Éducation Europe chez Lenovo. Au travers de ma présentation, je chercherai à illustrer le fait que pour agir sur les questions d'IA, il n'est pas nécessaire d'avoir embrassé des carrières scientifiques, mais il faut faire preuve de curiosité.

Le Cercle InterElles s'est emparé de ce sujet. On y trouve des profils divers, issus de la Tech, mais aussi du commerce, de la supply chain ou encore des ressources humaines.

J'aimerais ajouter deux biais aux exemples cités précédemment. Le premier est observé dans le monde de la finance. L'Apple Card accordait des crédits moindres aux femmes qu'aux hommes à situation socioprofessionnelle équivalente. On parle effectivement de besoin d'éducation à la finance, mais si les algorithmes discriminent aussi les femmes sur ces sujets, comment faire ?

Par ailleurs, en tant que directrice de l'éducation, j'aimerais insister sur des biais mis en avant par une étude de Stanford sur les orientations scolaires. Certains outils basés sur l'intelligence artificielle amenaient les femmes à considérer de manière moindre les carrières dans les mathématiques notamment.

Les exemples sont encore trop nombreux. Que pouvons-nous faire ? Comment les entreprises peuvent-elles agir ? Pour y répondre, je commencerai par vous présenter le Cercle InterElles, une association de réseaux, de mixité, autour de quinze entreprises du secteur technologique et industriel potentiellement productrices, ou au moins utilisatrices, d'intelligence artificielle. Le Cercle InterElles réunit ces réseaux qui agissent pour plus d'égalité professionnelle entre les femmes et les hommes, à l'image de ce que fait le Laboratoire de l'égalité depuis de nombreuses années. En 2018-2019, face au scandale des outils de recrutement, nous avons cherché des solutions pour accompagner les entreprises qui produiront ou utiliseront de plus en plus de solutions d'intelligence artificielle, de manière à les inciter à le faire de façon responsable et non sexiste.

Puisque nous représentons les secteurs technologiques et industriels, nous voulions montrer qu'il était possible d'agir sur cette question, et donner l'exemple. Nous désirions également proposer une démarche simple, accessible, pour de grandes entreprises comme les nôtres, mais aussi pour des start-up, des écoles ou tout acteur ayant envie d'agir et de comprendre les bases à poser pour être meilleur dans ce domaine.

La démarche que nous proposons est le fruit d'une recherche menée en 2018 et 2019. Nous avons dressé un inventaire de toutes les bonnes pratiques émises, valorisées et créées jusqu'alors, et de nos connaissances d'experts dans les différents domaines. Nous avons identifié une convergence de points de vue de différentes entreprises, un consensus sur la bonne démarche à employer. Nous nous rejoignions sur le fait que cette démarche est un voyage. Elle doit s'inscrire dans le temps. Elle doit commencer par un engagement : les entreprises doivent déclarer leur volonté d'agir, même si elles ne savent pas comment le faire. Elles peuvent signer des chartes ou prendre la parole publiquement, ce qui leur permet d'ancrer et de trouver un point de départ à leur démarche. Elles peuvent également créer une émulation dans leur écosystème d'entreprises, de partenaires, de concurrents.

Aujourd'hui, une quinzaine d'entreprises ont déjà signé la charte Femmes et IA pour une IA responsable et non sexiste. Cela les aide à prendre position.

La deuxième démarche consiste, pour les sociétés, à s'évaluer. On pense que les entreprises, y compris technologiques, sont très matures en matière de compréhension de leur situation sur les questions de traitement de l'IA. Ce n'est pas si simple, ni évident. Les petites entreprises manquent de moyens. Dans les grandes entreprises, tant de choses sont mises en place qu'il n'est pas aisé d'identifier tout ce qui s'y passe. Il est donc important de se poser les bonnes questions et de s'évaluer.

Pour ce faire, nous avons créé une grille d'évaluation. Elle reprend les sept grands thèmes sur lesquels nous pensons qu'il est nécessaire d'agir - j'y reviendrai tout à l'heure - en expliquant comment être exemplaire en la matière. L'entreprise pourra s'identifier en réalisant des audits internes, afin de définir son niveau de maturité sur la manière de se préoccuper et d'embrasser la question de l'IA égalitaire et non sexiste. Cette grille d'évaluation, gratuite, est mise à disposition de toutes les entreprises. Elle ne constitue pas un audit. Les sociétés peuvent s'en emparer pour procéder à leur propre évaluation. C'est une première étape d'engagement après la déclaration d'une volonté.

Une fois que l'entreprise a identifié son niveau de maturité, ses points forts et les domaines dans lesquels elle est moins avancée, elle peut passer à l'action. Le Cercle InterElles a créé une boîte à outils qui leur offre des éléments concrets à mettre en place sur les volets sur lesquels elles veulent avancer. Nous avons produit ces outils et dressé un inventaire de l'existant au sein de notre écosystème. Nous mettons en avant un certain nombre de démarches, d'initiatives d'autres partenaires qui oeuvrent sur des IA responsables et non-sexistes. Nous mettons un point d'honneur à valoriser toutes les initiatives qui vont dans la bonne direction.

Enfin, le dernier pilier est celui de l'exemplarité. Les entreprises doivent montrer qu'il est possible d'agir, de partager les bonnes pratiques. En créant une émulation autour de soi, on amène d'autres personnes à se poser les bonnes questions.

J'indiquais plus tôt que ces quatre démarches s'appuyaient sur sept domaines particuliers sur lesquels nous pensons qu'une entreprise peut agir : mettre en place une gouvernance ; faire en sorte que l'entreprise s'approprie et se cultive sur le volet légal et la conformité dès la conception ; mener des actions particulières sur le choix et le traitement des données ; insister sur la responsabilité et l'éthique algorithmique ; évaluer et définir des points de contrôle pour s'assurer que les IA n'apprennent pas de biais avec le temps ; renforcer la diversité des équipes d'intelligence artificielle ; enfin sensibiliser et responsabiliser les équipes d'intelligence artificielle, mais aussi tous les salariés, au rôle de l'entreprise. Je m'appuierai sur un exemple concret, celui des ressources humaines.

Ce département pourrait être amené à utiliser des outils d'IA pour le recrutement ou la gestion de carrière. Si ces personnes et ces métiers ne sont pas sensibilisés au fait qu'un outil d'IA peut être contre-performant pour telle ou telle raison, on pourrait constater des dysfonctionnements. Il est donc important de sensibiliser l'ensemble des salariés sur ces sujets. Des formations gratuites sur l'IA sont à la disposition des entreprises pour que les équipes en comprennent au moins les fondamentaux.

Ensuite, quel est le rôle externe de l'entreprise ? Jessica Hoffmann et moi-même intervenons pour expliquer comment les entreprises agissent, pour montrer qu'il est possible de s'investir dans un écosystème qui oeuvre pour une intelligence artificielle responsable et non-sexiste.

Nous ne pouvons y parvenir seules. Ce matin, nous avons beaucoup parlé d'interdisciplinarité, de partenariat, de travail en commun. À l'image de tout ce qui se passe aujourd'hui sur ces sujets, le Cercle InterElles fait en sorte de favoriser l'effet « boule de neige », de favoriser un travail commun pour avancer dans la bonne direction. Nous travaillons par exemple avec le Laboratoire de l'égalité depuis 2018, le Women's Forum, Femmes Ingénieurs, l'université de Berkeley, Impact AI ou Arborus.

Au-delà du pacte expliquant la démarche en quatre piliers, le Cercle InterElles vient de lancer un module de formation en collaboration avec Impact AI. Il s'adresse à l'ensemble des écoles d'ingénieurs, mais pas seulement, il s'adresse à tous ceux qui vont former les personnes qui travailleront demain sur des sujets d'IA ou qui utiliseront de tels outils. Ce module de sensibilisation de trois heures est mis gratuitement à la disposition de l'ensemble des écoles ou des centres de formation qui le souhaitent. Nous mettons à disposition les documents, mais aussi le guide du formateur et les exercices pratiques.

Cette formation a pour objectif de faire comprendre ce qu'est un biais de genre, d'apprendre à les déceler et à voir à quel moment ils peuvent s'immiscer dans le développement de l'algorithme, et de montrer qu'il existe des outils pour les pallier. Il est possible d'agir, de renverser la tendance. Ce module est plutôt destiné à un public étudiant ou à des organismes de formation inter-entreprises.

Stéphane Piednoir, président de l'Opecst. - Merci beaucoup. Je vous propose de prolonger ces interventions avec les questions de nos collègues.

Les thèmes associés à ce dossier

Partager cette page