II. PREMIÈRE TABLE RONDE, PRÉSIDÉE PAR M. CLAUDE DE GANAY, RAPPORTEUR : LES TECHNOLOGIES RELEVANT DE L'INTELLIGENCE ARTIFICIELLE

1. Mme Dominique Gillot, sénatrice, membre de l'OPECST, rapporteure

Comme vient de le souligner le président Le Déaut, nous avons l'ambition forte d'aider la décision politique en l'appuyant sur la réflexion scientifique et le dialogue entre les scientifiques et les politiques. Cette gouvernance, souvent réclamée et exaltée, est quelquefois difficile à mettre en place du fait de la frontière qui existe entre ces deux mondes. L'OPCST a vraiment vocation à éclairer les parlementaires et, au-delà, les décideurs de la puissance publique. Tel est notre objectif avec le rapport de l'Office sur l'intelligence artificielle, afin de participer à la formation de la décision politique.

Pour ma part, je modérerai quelque peu les propos de mon collègue : l'intelligence artificielle ne signifie pas seulement que l'homme doive se soumettre, car il peut aussi en bénéficier, profiter de nouvelles opportunités. De même, il ne s'agit pas simplement d'être assujetti, on peut aussi maîtriser pour partager des progrès. J'ai une vision plutôt optimiste de l'avancée de la science pour autant que l'homme se donne les moyens de continuer de l'accompagner et de la maîtriser. Le meilleur rendement, c'est l'homme et la machine ; ce n'est pas la machine seule.

2. M. Claude de Ganay, député, membre de l'OPECST, rapporteur

Dominique Gillot vient de préciser le cadre de travail de l'Office.

La première table ronde que j'ai l'honneur de présider porte sur les technologies relevant de l'intelligence artificielle. Nous avons choisi ce titre pour évoquer le caractère multiple de ces technologies et préciser tout particulièrement ce que l'on met derrière le label « intelligence artificielle ».

Je demanderai aux intervenants de respecter un temps de parole de sept ou huit minutes maximum, afin d'avoir un temps raisonnable pour notre débat interactif.

Je laisse tout d'abord la parole à Jean-Gabriel Ganascia, professeur à l'Université Pierre-et-Marie-Curie Paris-VI, rattaché au laboratoire d'informatique de l'Université Paris-VI. Vous présidez depuis quelques mois le comité d'éthique du CNRS. Physicien et philosophe d'abord, puis informaticien, passionné par les sciences cognitives, vous êtes un spécialiste reconnu de l'intelligence artificielle. Vous avez d'ailleurs publié de nombreux ouvrages à ce sujet : le prochain, qui devrait être publié en février, devrait s'intituler : « Le mythe de la singularité. Faut-il craindre l'intelligence artificielle ? » Nous allons vous écouter afin de répondre de manière argumentée à cette question.

3. M. Jean-Gabriel Ganascia, professeur à l'Université Pierre-et-Marie-Curie, Paris-VI

Monsieur le président, mesdames, messieurs les sénateurs, mesdames, messieurs les députés, je vous remercie tout d'abord de m'avoir invité. Pour respecter scrupuleusement le temps qui m'a été alloué, j'entre dans le vif du sujet.

J'ai intitulé mon exposé sur l'intelligence artificielle « Naissance et renaissances de l'intelligence artificielle » . Comme l'a relevé précédemment M. Sido, il existe différentes renaissances de l'intelligence artificielle. D'une certaine façon, il y a un caractère cyclique, que j'appelle « un temps tressé ». Les technologies de l'information en général font que des technologies oubliées redeviennent importantes.

L'autre élément important tient à l'article défini singulier : l'intelligence artificielle. Il s'agit d'une discipline scientifique ; on ne peut donc pas parler d'une intelligence artificielle. Cela substantifierait les objets mus par l'intelligence artificielle, ce qui, à mon sens, est incorrect.

Permettez-moi de faire une petite rétrospective. L'idée de faire une machine qui raisonne est très ancienne : cela remonte à Leibniz. Au XIX e siècle, Jevons a utilisé l'algèbre de Boole pour faire un piano mécanique, qui faisait du raisonnement de façon automatique. Ensuite, en 1943, avant la construction du premier ordinateur électronique, la cybernétique - ce nom ne sera donné qu'en 1946 - s'est attachée à la simulation du raisonnement sur des machines.

Sans entrer dans le détail, deux articles princeps paraissent en 1943, un article sur la notion de rétroaction et un second sur la notion de réseaux de neurones formels, une idée introduite par deux personnes, Warren McCulloch et Walter Pitts, un jeune mathématicien alors âgé de vingt ans. Ce dernier montre que des réseaux très simples, avec de petits automates organisés sur trois couches connectées entre elles, permettent de réaliser n'importe quelle fonction logique. Il établit alors un parallèle entre ce que l'on connaissait à l'époque du cerveau et l'ingénierie, cette fabrication d'outils. Toutefois, il faut réussir à connecter les trois couches du réseau entre elles, et l'apprentissage de ces connexions fera l'objet des travaux menés dans les soixante ou soixante-dix années qui suivent.

La vraie naissance de l'intelligence artificielle date de 1956 : un programme de recherche a été écrit par deux jeunes mathématiciens âgés de vingt-huit ans, John McCarthy et Marvin Minsky. Ce programme de recherche est primordial - c'est l'équivalent de ce que fut, en son temps, la déclaration de Galilée au début de l'âge moderne lorsqu'il affirme que la nature s'écrit en langage mathématique : l'esprit peut se décomposer et se simuler avec une machine. Je l'ai souligné dans ma diapositive, tous les aspects de l'apprentissage et toutes les autres caractéristiques de l'intelligence peuvent être décrits de façon si simple qu'une machine peut les simuler. C'est ce coup d'envoi épistémologique de l'intelligence artificielle qui est central pour l'âge moderne.

Quelles sont les différences caractéristiques de l'intelligence ? J'ai utilisé une décomposition classique qu'utilisent les spécialistes des sciences cognitives, à savoir cinq fonctions cognitives classiques : les fonctions réceptives, avec l'analyse des formes, des images, des sons, etc. ; la mémoire et l'apprentissage ; les questions de raisonnement et de pensée, qui sont simulées par les machines ; les fonctions expressives - comment parler ? Comment échanger ? - et les fonctions exécutives - les robots dont on a parlé tout à l'heure.

Je parlerai maintenant des renaissances. Quelles sont les techniques ? Elles sont nombreuses. Mais je me contenterai de vous parler de l'apprentissage profond, le deep learning . Le cycle des renaissances commence en 1943 avec les réseaux de neurones formels : un réseau à trois couches peut réaliser n'importe quelle fonction logique : c'est une propriété d'universalité des réseaux. Le problème réside dans le fait d'établir des connexions entre la première et la deuxième couche, et la deuxième et la troisième. Ce travail de programmation étant extrêmement fastidieux, on essaie de le faire automatiquement. Marvin Minsky avait essayé de faire ce travail dans sa thèse, sans y parvenir. En 1959, Frank Rosenblatt avait inventé le perceptron, mais ce système n'apprenait les connexions que sur le réseau à deux couches, ce qui était très pauvre.

La nouvelle renaissance intervient en 1986, avec des théories mathématiques nouvelles, la Back Prop , la rétropropagation de gradient permet d'assurer l'apprentissage. Des mathématiciens essaient de formaliser tout ce travail avec d'autres techniques. À partir de 2010, on réutilise les réseaux de neurones non plus à trois, mais à treize couches, mais je n'entrerai pas dans le détail. Les résultats sont époustouflants, notamment pour la reconnaissance des formes. Je citerai un exemple marquant, la reconnaissance des visages. Différentes sociétés s'intéressent à ce sujet, la société FaceNet de Google ou DeepFace de Facebook entre autres : pour la première, le taux de reconnaissance est de 99,63 %, mais il faut apprendre sur 200 millions d'images, ce qui pose un certain nombre de questions, que nous aborderons ultérieurement.

Autre enjeu majeur, voilà moins d'un an, la machine AlphaGo a battu celui que l'on considérait à l'époque comme le meilleur joueur de Go au monde. Certes, il s'agit d'un jeu, mais celui-ci est extrêmement sérieux. Du point de vue scientifique, John McCarthy disait des jeux qu'ils étaient la drosophile de l'intelligence artificielle. C'est en fait ce qui va permettre de tester l'ensemble des techniques, et cela fait appel à de l'apprentissage profond, ainsi qu'à d'autres techniques d'apprentissage, tel l'apprentissage par renforcement.

Pour clore cette présentation, je parlerai des enjeux liés à l'intelligence artificielle : les enjeux éthiques certes, dont nous parlerons ultérieurement, mais aussi les enjeux économiques, qui sont majeurs.

Je citerai une technique qui a suivi toute l'histoire de l'intelligence artificielle, celle des agents conversationnels. Le test de Turing en 1950 imaginait une conversation entre une machine et un homme, la confusion qu'il peut y avoir entre un homme et une machine. Dans les années soixante, Joseph Weizenbaum a aussi imaginé un agent conversationnel. Depuis quelques années, de nombreux travaux ont été publiés sur ce sujet. L'agent conversationnel Tay a défrayé la chronique l'an dernier ; la société Amazon a développé le système Écho, Google l'Assistant, et Apple a fait part de son intention de développer un assistant conversationnel nommé Viv, qui doit prendre la relève de Siri. Ils pensent qu'ils vont constituer le segment terminal dans toute une chaîne de valeurs. La publicité sera « cool » avec les agents conversationnels : vous pourrez commander une pizza directement de votre bureau. L'enjeu est simple : les personnes qui maîtriseront la technologie de cet agent auront alors un rôle déterminant sur toute la restauration rapide.

J'évoquerai enfin les enjeux politiques, les enjeux de souveraineté.

Si l'on considère les fonctions régaliennes de l'État, à savoir la défense, la sécurité intérieure, les finances et la justice, on voit qu'elles sont toutes transformées par l'intelligence artificielle, car de nouveaux acteurs interviennent.

Pour citer la justice, j'ai été surpris de constater que les États-Unis utilisent des systèmes prédictifs ; cela n'existe pas encore en France. Le site crowdlaw.org peut faire de la législation collective en s'adressant à la population. Tout cela fait réfléchir.

Concernant la finance, les États avaient le privilège de battre monnaie ; c'est un peu moins vrai avec l'Europe et cela l'est encore moins avec les monnaies virtuelles.

S'agissant de la sécurité intérieure, dans le cadre de leur programme d'exemption de visas, les États-Unis exigent depuis quelques semaines que soient notés sur le formulaire Esta les pseudonymes sur les réseaux sociaux. Cela signifie, d'une certaine façon, que l'état civil est mieux défini par ces réseaux que par l'État. On peut aussi parler de la reconnaissance des visages, qui assure une certaine sécurité. Là encore, l'État ne peut y procéder parce qu'il ne dispose pas des images et n'a pas toutes les capacités pour le faire, même d'un point de vue légal.

Enfin, pour ce qui concerne la défense, dont je croyais qu'elle restait le privilège de l'État, j'ai appris voilà quelques semaines que les grandes entreprises veulent être autorisées à avoir une attitude non seulement défensive sur le cyberespace, mais également offensive, pour se battre contre leurs agresseurs.

M. Claude de Ganay, rapporteur . - Monsieur Gérard Sabah, vous êtes directeur de recherche honoraire au CNRS. Vous avez longtemps travaillé au sein du laboratoire d'informatique pour la mécanique et les sciences de l'ingénieur à Orsay, le LIMSI. En tant que membre titulaire de l'académie des technologies, vous avez produit en 2009 une brochure sur l'intelligence artificielle, qui faisait un point très intéressant sur l'histoire de ces technologies. Je vous demande donc de bien vouloir nous dresser le bilan de ces technologies.

4. M. Gérard Sabah, directeur de recherche honoraire au CNRS

Monsieur le président, mesdames, messieurs les sénateurs, mesdames, messieurs les députés, je vous remercie de cette invitation. Je suis content de constater que l'audition est ouverte à la presse, même si elle est assez peu représentée : elle sera ainsi informée de nos travaux. Cela lui permettra d'éviter de publier des articles intitulés « Il n'y aura jamais d'intelligence artificielle. L'idée d'intelligence artificielle présuppose qu'il n'existe qu'une seule forme d'intelligence. » Bien sûr, cela n'est pas le cas. Nous avons essayé, dans le cadre des travaux relatifs à l'intelligence artificielle, d'identifier un certain nombre de caractéristiques de cette intelligence. Pour les premières d'entre elles que j'ai listées sur ma diapositive, l'informatique, en général, et l'intelligence artificielle, en particulier, sont capables de réaliser la plupart des éléments notés, et les recherches pointues portent sur la réalisation des derniers éléments de la liste.

Je rappelle très brièvement les principaux outils de l'intelligence artificielle classiques : au tout début, le développement d'arborescences, la recherche dans les arbres, avec des procédures d'amélioration pour accélérer les choses ; le système expert dans les années quatre-vingt ; le développement de logiques non classiques pour essayer de rendre compte de la complexité des raisonnements humains ; la programmation par contrainte, les réseaux de neurones, les algorithmes génétiques, raisonnement par analogie. On le voit bien, différents modes de raisonnement ont été mis en oeuvre. Les mécanismes de l'intelligence artificielle sont également très variés.

Trois courants de pensée relativement différents sous-tendent l'intelligence artificielle : l'analogie symbolique, dont Jean-Gabriel Ganascia a parlé, est fondatrice de la discipline - les processus mentaux sont censés se résumer à des manipulations de symboles ; l'intelligence artificielle distribuée, où la pensée est vue comme un phénomène collectif - le développement de nombreux agents élémentaires peut être synthétisé et produire un comportement intelligent - et la métaphore des réseaux où l'intelligence est considérée comme une diffusion d'activités au niveau des réseaux de neurones.

Je vous ferai part de quelques succès : les échecs, le backgammon, le jeu de Go où le champion du monde a été battu, le développement d'interfaces vocales, et Watson, qui a battu les meilleurs joueurs mondiaux au jeu Jeopardy.

À cet égard, je souligne que Watson disposait de quinze téraoctets de mémoire vive et utilisait près de trois mille processeurs. Cet ordinateur est donc loin d'être similaire à ceux dont nous disposons. IBM a dit que, si le programme avait été mis sur un ordinateur de bureau, les logiciels auraient mis deux à trois heures pour répondre à une question. Le jeu consistait à trouver une question dont la réponse lui avait été communiquée. À la question « Un écrivain dont le héros est Hercule Poirot », il fallait répondre : « Qui est Agatha Christie ? » Watson disposait de deux cents millions de pages d'encyclopédies, de dictionnaires, de livres, d'articles de journaux, de scénarios de films, etc. Comme ses adversaires, il n'avait pas accès à Internet, mais il avait toutes ces données en mémoire.

Actuellement, l'apprentissage profond lié aux données massives est à la mode. On dispose de quantités de données absolument extraordinaires en la matière. Comme l'a montré Jean-Gabriel Ganascia, l'apprentissage profond, qui consiste à utiliser de nombreuses couches intermédiaires, permet de mettre en évidence un certain nombre de concepts élémentaires utiles pour la reconnaissance d'images ou la compréhension de textes, par exemple. Cela a été rendu possible par le développement de la puissance de calculs des machines et par l'utilisation de nouvelles puces graphiques, utilisées aussi au niveau du calcul.

Quelles sont les limites ?

Dans ce type de mécanisme, le réseau produit effectivement quelque chose, mais n'a pas de possibilité d'explication. On ne comprend pas forcément pourquoi cela marche. Cela peut être opposé aux travaux relatifs aux mécanismes d'apprentissage à partir de très peu d'exemples. En 2015, dans la revue Science , un article a montré comment on pouvait réaliser des apprentissages à partir d'un ou deux exemples.

Le programme DeepDream créé par Google reconnaît, disaient-ils, une image de chat après plusieurs centaines de milliers ou de millions d'analyses d'images. Que veut dire reconnaître un chat ? Il ne faut pas imaginer que l'ordinateur a compris ce qu'était un chat ou qu'il a mis en évidence ce concept. En fait, il met dans la même classe toutes les images de chat. Si l'on demande à l'ordinateur d'autres caractéristiques du chat, il ne pourra évidemment pas y répondre.

Je formulerai quelques réflexions futures, en insistant sur deux points.

La question de l'hybridation. Le fantasme actuel de l'auto-apprentissage ? Actuellement, on a l'impression que l'hybridation va tout résoudre, mais l'intelligence artificielle ne se résume pas à l'apprentissage machine, en particulier aux techniques de réseaux de neurones profonds, d'apprentissage profond.

L'intelligence artificielle, comme prothèse, vise à ajouter aux compétences humaines et conduit à se demander dans quelle mesure l'homme va pouvoir éventuellement être « augmenté » par les techniques de la machine.

Plus loin, il y a la notion de conscience, avec la capacité à se représenter soi-même et à raisonner sur ses représentations : on pourrait se demander dans quelle mesure les machines pourraient acquérir ce type de capacités.

J'ai essayé de résumer les avantages et les inconvénients des deux approches des systèmes symboliques de l'intelligence artificielle classique et les réseaux de neurones profonds : difficultés à généraliser pour les systèmes symboliques, généralisation naturelle pour les réseaux de neurones, etc. Essayer de faire collaborer ces deux approches présente manifestement un certain nombre d'avantages, dont certains peuvent être regroupés.

Je ne m'attarderai pas sur l'hybridation entre l'homme et l'intelligence artificielle, car Laurent Alexandre, qui doit intervenir cet après-midi, en parlera beaucoup mieux que moi.

Les hybridations entre les systèmes symboliques et les systèmes neuronaux : le but est d'obtenir de meilleures performances globales, comme je l'ai dit précédemment, avec des champs d'application plus larges, afin de permettre l'acquisition de nouvelles connaissances à partir de sources différentes et pas toujours cohérentes.

Comment y parvenir ?

Il faut, par exemple, essayer d'adapter la structure du réseau avec des algorithmes génétiques ; introduire des modules symboliques dans les réseaux, afin de permettre l'utilisation de logiques floues, de systèmes de règles. Diverses questions se posent, que je n'ai pas le temps d'évoquer ici : comment intégrer ces différents modules ? Comment interagissent-ils entre eux ?

Par ailleurs, concernant la conscience : selon Gerald Edelman, prix Nobel en neurobiologie, les fonctionnalités nécessaires à une véritable intelligence sont celles qui sont fondées sur l'inconscient et qui permettent l'émergence de la conscience chez l'homme. Pourquoi cette assertion ne serait-elle pas vraie pour les machines ?

Souvent, la première question que l'on peut se poser est la suivante : un robot ou un système pourra-t-il être conscient ou peut-on reproduire la conscience humaine dans une machine ? À mon sens, ce n'est pas la bonne question. Il faut se demander : parmi les fonctionnalités que l'homme attribue à sa conscience, lesquelles pourront-elles être mises en oeuvre dans des futurs robots ? La notion de conscience est un concept si multiforme qu'il n'est pas possible d'en donner une définition précise. L'idée est donc d'imaginer les différentes fonctionnalités liées à cette notion. L'intelligence artificielle ne cherche pas à reproduire un être humain ; il existe d'autres moyens...

Dans le cadre d'un groupe de travail que j'ai animé au sein de l'académie des technologies, nous avons essayé d'identifier dans notre rapport ces différentes fonctionnalités. Sur ma diapositive, j'ai indiqué en vert les différentes fonctionnalités que l'on sait déjà mettre en oeuvre ; en orange, celles pour lesquelles on commence à avoir quelques idées, que l'on sait presque faire ou que l'on pourra faire bientôt et, en rouge, celles qui semblent en dehors de nos compétences actuelles. On le voit, un certain nombre de fonctionnalités sont réalisables dès maintenant ou le seront bientôt.

Que faut-il de plus pour avoir une intelligence artificielle forte ?

Il faudrait que ces mécanismes soient capables de prendre du recul, de changer de mode de raisonnement, de trouver des analogies entre des univers différents, de développer des théories, de les vérifier par l'expérimentation et d'avoir envie de faire quelque chose. Qu'est-ce que cette notion d'envie, qui peut être une motivation pour agir ?

Dans un monde ouvert, se posent des problèmes de relations. Dans un monde fermé, on sait préciser les limites de ces techniques. Il faut également tenir compte de la vision stratégique à long terme des « GAFA » - Google, Apple, Facebook et Amazon -, qui semblent pour l'instant prendre le contrôle sur tous ces aspects. Il importe que l'Europe se positionne en la matière.

Alors sur cette intelligence artificielle forte : est-ce de la science-fiction ou n'est-ce qu'une question de calendrier ? Il n'y a jamais eu d'impossibilité prouvée scientifiquement, ni de preuve de possibilité non plus. Toutefois, il faut le souligner, l'intelligence artificielle n'est pas une technique comme les autres au sens où elle débouche sur une certaine autonomie et qu'elle a des possibilités d'apprentissage, d'auto-modifications, etc. Le problème fondamental qui se pose concerne la validation : comment peut-on garantir les propriétés d'un tel système ? Et comment parvenir à conserver le contrôle face aux robots éventuellement dotés de ces capacités ?

M. Claude de Ganay, rapporteur . - Je vous remercie pour ce bilan.

Monsieur Yves Demazeau, vous êtes directeur de recherche au CNRS à Grenoble. Mais vous êtes surtout président de l'Association française pour l'intelligence artificielle, et c'est à ce titre que nous vous avons invité. Vous allez pouvoir nous dresser un tableau de la recherche française dans le domaine de l'intelligence artificielle.

5. M. Yves Demazeau, président de l'Association française pour l'intelligence artificielle

Monsieur le président, mesdames, messieurs les sénateurs, mesdames, messieurs les députés, je vous remercie de votre invitation. À vrai dire, je suis d'abord directeur de recherche au CNRS et, pendant mon temps libre, président de l'Association française pour l'intelligence artificielle (AFIA).

Je vous présenterai l'AFIA et vous exposerai les trois objectifs que nous recherchons depuis 2011, en essayant de dresser un panorama de l'activité de recherche dans le domaine de l'intelligence artificielle en France, du point de vue des chercheurs.

L'intelligence artificielle, discipline née il y a 60 ans, existe donc depuis longtemps. Il s'agit d'une force tranquille qui continue de progresser.

Elle s'intéresse à l'imitation du comportement humain, par l'usage de l'informatique. L'objectif est de créer des systèmes dont le comportement s'apparente à celui de l'être humain.

Les thèmes scientifiques développés à la dernière International Joint Conference on Artificial Intelligence (IJCAI) qui s'est tenue à New York en juillet 2016, étaient les systèmes multi-agents, l'intelligence artificielle et le web, l'analyse combinatoire et la recherche heuristique, l'apprentissage automatique, la planification, le contexte humain, et d'autres encore. Lorsque j'ai commencé à travailler sur ces sujets, il y a près de 35 ans, l'intelligence artificielle regroupait tous ces thèmes au sein de cette même conférence IJCAI. L'enjeu était alors surtout de comprendre comment construire une machine intelligente composée de tous ces domaines. Cette question s'étant révélée très complexe, le problème a été décomposé. Et si la lumière est projetée de temps en temps sur tel ou tel domaine, l'enjeu ultime reste l'intégration de ces différentes parties.

La recherche en intelligence artificielle, comme toutes les autres recherches, suit des cycles, du fait des découvertes et des couvertures médiatiques. Ainsi, on a beaucoup parlé à un moment donné d'intelligence artificielle à propos des systèmes experts, on parle beaucoup actuellement d'apprentissage profond. Ce focus actuel est dû à des résultats spectaculaires, qui ne sont possibles maintenant que par la conjonction de la disponibilité de masses de données, et de la capacité de calcul des machines qui ne fait que croître. Si ces progrès n'avaient pas existé, le buzz actuel pourrait tout aussi bien concerner plutôt l'autonomie, en particulier en ce qui concerne les véhicules autonomes. Alors, sur quoi le focus sera-t-il mis dans quelques années ?

En France, l'AFIA a identifié dix thèmes de recherche, organisés en à peu près autant de communautés, sinon de conférences :

- apprentissage automatique ;

- extraction et gestion des connaissances ;

- interaction avec l'humain ;

- reconnaissance des formes, vision ;

- représentation et raisonnement ;

- robotique et automatique ;

- satisfaisabilité et contraintes ;

- sciences de l'ingénierie des connaissances ;

- systèmes multi-agents et agents autonomes ;

- traitement automatique des langues.

Au passage, l'apprentissage profond, qui a réveillé l'intelligence artificielle ces dernières années, ne correspond selon nous qu'à 50 % de l'apprentissage automatique, qui est lui-même l'un de ces dix thèmes. Il y a donc aussi tout le reste... Cet éclatement en sous-disciplines, qui se sont forgées chacune une identité ces trente dernières années nous pénalise aujourd'hui, et nous avons donc tout intérêt à les faire interagir entre elles.

Certes, la vision peut paraître un peu académique, mais 95 % des membres de l'AFIA sont issus du monde académique, contre trop peu d'entrepreneurs et d'industriels encore. D'où vient ce décalage ?

Depuis soixante ans, les États-Unis ont bien compris leur intérêt stratégique en matière d'intelligence artificielle. Créateurs de la discipline - au moins du point de vue occidental - ils nous imposent leurs vues et pillent nos forces françaises en intelligence artificielle. C'est très visible dans les conférences internationales comme IJCAI, mais c'est aussi semble-t-il le cas ici. Les industriels invités à la présente audition l'illustrent également : je vois surtout des représentants des GAFAMI.

Suivant les acceptions, l'intelligence artificielle peut représenter jusque 50 % de l'informatique. Ainsi, la moitié des Lecture Notes in Computer Science (LNCS) aux éditions Springer-Verlag est consacrée à l'intelligence artificielle - ( Lecture Notes in Artificial Intelligence ou LNAI) -. En France, l'intelligence artificielle n'atteint certes pas ce niveau de reconnaissance ! Au temps de ma thèse de doctorat il y a trente ans, mon directeur de recherche, Jean-Claude Latombe, avait réussi à faire organiser par le ministère de la Recherche d'alors, un programme de recherches concertées (PRC) sur l'intelligence artificielle, doté d'un budget d'un million de francs, ce qui représentait alors 20 % de l'effort de recherche du gouvernement en informatique. Depuis, l'intérêt gouvernemental et des organismes publics pour l'IA n'a fait que baisser, l'IA est souvent bien ignorée, ou plutôt enfouie tellement profondément qu'elle n'est plus visible.

Du point de vue de l'enseignement, on a également trop souvent considéré ces dernières années que les outils et techniques de programmation en intelligence artificielle faisaient partie des acquis en algorithmique. Dans certaines villes, l'intelligence artificielle est tellement banalisée que l'enseignement a disparu des formations universitaires, ce qui est grave et le sera encore plus dans le futur si rien n'est fait.

Il faut dire que régulièrement, on nous demande des mots et des challenges nouveaux. On nous dit qu'en intelligence artificielle, on fait toujours un peu la même chose, mais le challenge de l'intelligence artificielle, à savoir l'imitation du comportement humain, est toujours le même et il est bel et bien là, vivace comme aux premiers temps. Alors, en dépit de la réduction des moyens, la communauté résiste néanmoins au risque d'éclatement.

Les sous-communautés de l'IA se sont créées voilà une trentaine d'années parce que le problème d'imitation de l'intelligence humaine était un peu trop compliqué. Mais il faut réussir à faire interagir ces communautés et à intégrer les résultats de leurs recherches et de leurs avancées. Face au risque d'éclatement de la communauté en IA et au besoin d'assurer des rencontres entre les chercheurs, une association, dont l'objet est de « promouvoir et de favoriser le développement de l'intelligence artificielle en France », a été créée en 1993, à l'occasion d'une conférence IJCAI à Chambéry. En 2016, nous comptions jusqu'à 359 membres, dont encore bien trop peu d'industriels. Nous avons élaboré un plan 2011-2019, ayant pour objectifs de désenfouir l'intelligence artificielle et de réunir les communautés spécialisées et d'interagir avec les autres communautés.

Pour ce qui concerne le fait de désenfouir l'intelligence artificielle : nous tenons chaque année une conférence nationale, et organisons deux journées, dont l'une, en octobre, s'intitule « Perspectives et défis de l'intelligence artificielle (PDIA) ». En 2015, le thème en était « Les apprentissages ». En 2016, les « impacts sociaux de l'intelligence artificielle ». L'autre journée que nous tenons, tous les mois d'avril, est un « Forum industriel de l'intelligence artificielle (FIIA) ». L'année dernière, il s'agissait surtout du lancement du collège industriel de l'AFIA, où les membres ont discuté de l'investissement de l'intelligence artificielle dans leur environnement. Nous publions des bulletins trimestriels, depuis 2011, et avons une page web et des réseaux sociaux. Les dossiers sont accessibles en libre-service sur le web , avec des cartographies (agronomie, innovation, robotique, éthique, mégadonnées, réalité virtuelle, médecine, EIH, jeux vidéo, aide à la décision, etc.). Nous commençons aussi l'établissement d'un fonds de fiches car nous sommes très sollicités sur ce sujet et allons faire des efforts pour améliorer la compréhension de l'intelligence artificielle et de ses enjeux au plus grand nombre.

S'agissant de la réunion des communautés spécialisées, une plateforme intelligence artificielle (PFIA) se tient chaque année en juillet. Ayant identifié une dizaine de communautés spécialisées, qui pourront donner lieu à autant de collèges thématiques, cette plateforme permet de se retrouver. En 2017, la PFIA aura lieu à Caen du 3 au 7 juillet, vous y êtes cordialement invités. Deux collèges thématiques sont actifs à ce jour : l'un sur les « Sciences de l'ingénierie des connaissances » et l'autre sur les « Systèmes multi-agents et les agents autonomes ». Nous espérons lancer trois nouveaux collèges cette année. Par ailleurs, notre collège industriel se charge du forum industriel de l'IA ainsi que de la conférence sur les applications pratiques de l'IA au sein de la PFIA. Depuis deux ans, nous réalisons aussi des compétitions d'intégration au sein de la PFIA, qui constituent des mécanismes incitatifs pour que les collègues des dix collèges interagissent autour d'un objectif commun, et intègrent leurs technologies respectives. Pour l'instant, il s'agit de compétitions académiques. En 2017, la compétition porte sur l'intelligence artificielle dans les jeux interactifs. Mais nous espérons que ces compétitions, à l'avenir, aient par exemple pour objectif de résoudre des problèmes de nature industrielle qui seraient soumis par l'un des membres de notre collège industriel.

Enfin, nous cherchons à interagir avec les autres communautés, via des journées communes avec d'autres sociétés savantes et associations, d'organisations patronales (exemple de la journée commune avec le MEDEF le 23 janvier 2017), des groupements de recherche (GdR) du CNRS, mais aussi des pôles de compétitivité. Nous avons planifié une journée avec la société de philosophie des sciences (SPS) le 2 février, une journée avec l'AFIHM sur l'interaction homme-machine le 17 mars, une journée EIAH et IA avec l'ATIEF en juin, une journée « jeux informatisés » avec le pré-GdR AFAIA du CNRS en juillet, et, enfin, une journée éthique avec le COMETS du CNRS et la CNIL puis une journée recherche opérationnelle avec la ROADEF en septembre. Nous organisons également le 27 avril notre forum FIIA et le 6 octobre notre journée PDIA. Enfin, nous sommes consultés régulièrement, par exemple par l'Académie des technologies, par différents instituts comme l'IHEDN, par des municipalités et associations qui s'inquiètent de l'impact de l'intelligence artificielle, et par la presse, qui relaie les progrès en intelligence artificielle, avec un accent sur les États-Unis.

Pour conclure et envisager l'avenir de l'intelligence artificielle, nous pensons que cette dernière restera une force tranquille durant les soixante prochaines années car nous sommes encore loin d'imiter le comportement humain. Ceci dit, nous estimons que les machines sont, d'année en année, plus intelligentes, alors que l'être humain, lui, évolue moins vite. Je suis très surpris de voir que l'on se réfère toujours aux États-Unis, alors qu'il nécessaire de considérer ce qui se passe en Asie, en particulier en Chine et au Japon.

Aux États-Unis, l'industrie automobile investit beaucoup en intelligence artificielle et l'administration de Barack Obama a fait un rapport pour se préparer à l'intelligence artificielle, mais les gouvernements japonais et chinois ne sont pas en reste. C'est en Chine que l'investissement public semble le plus conséquent. En mai 2016, le nouveau plan national a ainsi intégré un programme en IA sur trois ans. J'ai été personnellement fasciné par le lancement du drone Ehang 184, en janvier 2016. Ce drone pèse 200 kilos et peut transporter une personne qui indique via un écran tactile la destination à laquelle il souhaite se rendre avec une autonomie de 25 minutes. Les Chinois ont beaucoup investi, et ont une vision différente, et à certains égards complémentaire, de celle des Américains. Le Japon a, lui aussi, lancé un nouveau plan d'action en intelligence artificielle sur trois ans. La robotique est dominante dans leurs investissements. Il y a plusieurs raisons à cela parmi lesquelles le fait fascinant que le shintoïsme conduit à croire dans la réincarnation dans des objets. La relation d'un Japonais avec un robot est donc assimilable à celle qu'il peut avoir avec un autre être humain. L'acceptabilité de la robotique au Japon ne sera sans doute jamais atteinte en France. Il faut accepter ces différences et cultiver nos spécificités. Nous avons une vision française de l'intelligence artificielle à valoriser nous aussi.

Au minimum, nous espérons que la France rétablira le poids de l'intelligence artificielle à 20 % au moins de l'informatique, ce qui est bien loin d'être le cas actuellement. La complexité de toutes les thématiques qui la composent est telle qu'un soutien de l'État à la hauteur des ambitions est nécessaire. Il incombe aux responsables politiques de fournir les moyens nécessaires à une intelligence artificielle française digne de ce nom. Il me semble, par ailleurs, essentiel de rétablir l'enseignement de l'intelligence artificielle dans toutes les filières universitaires. 40 % des chercheurs en apprentissage profond avouent ne pas savoir expliquer les raisons pour lesquelles leur technologie donne des résultats. Les machines vont devenir de plus en plus complexes et de moins en moins explicables. Il y a donc là un vrai problème, qui se posera de plus en plus demain.

Il convient aussi de mettre en valeur les réalisations françaises. Environ 500 personnes se sont inscrites à la journée « Entreprises de France et intelligence artificielle » que nous organisons la semaine prochaine avec le MEDEF. Des entreprises françaises y présenteront leurs réalisations en intelligence artificielle. Il faudrait que nos entreprises communiquent aussi bien que le font les GAFA sur leurs grandes réussites, au lieu de râler sur le coût du travail.

Enfin, il importe d'établir une meilleure coordination entre tous les acteurs de l'intelligence artificielle car si on perd la main au niveau national, il y a clairement un risque de perte de souveraineté. Chaque année, la recherche avance bien, avec différents cycles : on a beaucoup parlé à un moment donné de systèmes experts ; actuellement on parle de deep learning .

Les États-Unis ont compris leur intérêt stratégique à l'intelligence artificielle, et ils imposent leurs vues. C'est très visible dans les conférences internationales, en particulier, ainsi que lors des auditions.

Suivant les acceptions, l'intelligence artificielle peut représenter 50 % de l'informatique. La moitié des Lecture Notes in Computer Science aux éditions Springer-Verlag est consacrée aux Lecture Notes in Artificial Intelligence. En France, on n'en est pas là. Lorsque je faisais ma thèse, mon directeur de recherche, Jean-Claude Latombe, avait réussi à organiser voilà trente ans un PRC-GDR (programme de recherches coordonnées - groupe de recherche), avec un budget d'un million de francs, ce qui représentait 20 % de l'effort de recherche en informatique.

Dans certaines villes, l'intelligence artificielle est tellement banalisée que l'enseignement a disparu des formations universitaires, ce qui est grave. Depuis quelques années, on nous demande des mots nouveaux, des nouveaux challenges. En réalité, le challenge de limitation du comportement humain est encore présent. On nous oppose le constat que l'on fait toujours un peu la même chose et que la technologie est quelque peu enfouie dans le système intelligent. Même si cette situation a éclaté la communauté, celle-ci résiste néanmoins.

Les thèmes de l'intelligence artificielle au niveau international concernent non seulement le deep learning , mais également la planification, la modélisation, les connaissances, etc. Devant l'éclatement de la communauté et, simultanément, à la nécessité que les chercheurs en intelligence artificielle se rencontrent, a été créée en 1993, à l'occasion de la tenue de la conférence IJCAI ( International Joint Conference on Artificial Intelligence ) à Chambéry, une association régie par la loi de 1901, dont l'objet est la promotion et le développement de l'intelligence artificielle en France.

Nous avons élaboré un plan 2011-2019, ayant pour objectifs de désenfouir l'intelligence artificielle et de réunir les communautés spécialisées. Des sous-communautés se sont créées voilà une trentaine d'années parce que le problème était un peu trop compliqué. Mais il faudrait réussir à intégrer les résultats des recherches de toutes ces communautés. D'ailleurs, l'intelligence artificielle n'est pas un monobloc. Même si ce domaine fait partie d'une grande part de l'informatique, il doit y avoir une interaction.

En France, l'AFIA a identifié dix thèmes. Certes, la vision peut paraître un peu académique, mais 95 % des 348 membres de l'association sont des académiques, contre très peu d'industriels. L'apprentissage profond est, à nos yeux, une partie de l'apprentissage - moins de 50 %. Nous mettons actuellement un focus particulier sur l'apprentissage profond, mais cela pourrait tout aussi bien concerner le véhicule autonome, dont les recherches accusent un peu de retard. Certes, on peut toujours imaginer les prochains challenges, mais, dans quelques années, la priorité sera donnée à un autre sujet.

Non seulement l'informatique est explosé entre plusieurs dizaines d'associations, mais l'intelligence artificielle déborde sur un certain nombre de domaines. Nous interagissons donc avec d'autres associations.

Pour désenfouir l'intelligence artificielle, nous organisons une conférence nationale, des journées propres, des bulletins trimestriels incluant des dossiers. Nous commençons aussi l'établissement d'un fonds de fiches. Nous sommes en effet très sollicités sur ce sujet ; nous allons donc faire des efforts en termes de communication pour simplifier les choses. Nous avons aussi un portail web et des réseaux sociaux. J'indique que les dossiers sont accessibles en libre-service sur le web , avec des cartographies. Des équipes travaillent sur des thématiques applicatives données.

Réunir les communautés spécialisées : on est en train de créer autant de collèges thématiques qu'il y a de thèmes, mais on a aussi créé, il y a un an, un collège industriel. À cet égard, nous organisons lundi prochain une journée commune avec le MEDEF.

Par ailleurs, entre quatre cents et quatre cent cinquante personnes sont attendues l'été prochain pour assister à la plateforme intelligence artificielle. De plus, des journées communes sont organisées avec d'autres associations, des organismes, des pôles de compétitivité, des organisations patronales, des académies, des organisations gouvernementales, les municipalités, des organes de presse écrite et orale.

Une journée commune avec la société de philosophie des sciences est aussi prévue en février. Et bien d'autres rencontres sont programmées, avec d'autres associations, des groupements de recherche du CNRS ou tout organisme qui le demanderait.

Quoi qu'il arrive, on espère que l'intelligence artificielle continuera à être une force tranquille durant les soixante prochaines années. On est très loin d'être arrivé à étudier la limitation du comportement humain. On le constate, les machines sont chaque année de plus en plus intelligentes, alors que l'être humain ne va pas beaucoup évoluer. Il est nécessaire de considérer ce qui se passe en Asie. À cet égard, je suis très surpris de voir que l'on se réfère toujours aux GAFA, notamment. Pour ma part, je regarde ce qui se passe en Chine et au Japon. Vous le savez, le gouvernement Obama a fait un rapport de prospective pour se préparer à l'intelligence artificielle. Mais, en mai 2016, le gouvernement japonais a lancé un grand plan dans ce domaine. La Chine a également engagé en juin dernier un programme national en la matière pour les trois prochaines années.

J'espère que la France rétablira le poids de l'intelligence artificielle à 20 % au moins de l'informatique, ce qui est bien loin d'être le cas actuellement. La complexité de toutes les thématiques est telle que si le soutien de l'État n'est pas à la hauteur des ambitions, il sera alors quasiment sans effet. À vous de voir si vous y mettez les moyens.

Il me semble essentiel de rétablir l'enseignement dans les formations universitaires. Certes, on parle beaucoup actuellement de l'apprentissage profond. Mais sachez que 40 % des chercheurs en la matière ne savent pas expliquer les raisons pour lesquelles cela marche. Les machines vont devenir encore plus intelligentes et si aucune formation n'est dispensée en intelligence artificielle, il arrivera un moment où l'on comprendra encore moins ce qui se passe. Se pose donc là un problème.

Il convient de mettre en valeur les réalisations françaises. Je suis très heureux de voir que cinq cent dix personnes se sont inscrites à la journée que nous organisons la semaine prochaine en commun avec le MEDEF. On montrera aux entreprises françaises les réalisations en intelligence artificielle. Cela me semble important. Il faudrait que celles-ci communiquent aussi bien que le font les GAFA sur leurs grandes réussites, au lieu de râler.

Ensuite, il importe d'établir une meilleure coordination entre les acteurs de l'intelligence artificielle - on peut toujours le souhaiter. Je vous l'ai dit, si l'on perd la main au niveau national ou au niveau scientifique, il y a clairement un risque de perte de souveraineté. Il faut sans doute considérer l'intelligence artificielle comme une technologie de souveraineté.

M. Claude de Ganay, rapporteur . - Monsieur Bertrand Braunschweig, vous êtes directeur du centre de l'Institut national de recherche en informatique et en automatique (Inria) de Saclay et représentez le président-directeur général d'Inria, Antoine Petit, aujourd'hui retenu. Inria a publié l'été dernier un livre blanc sur l'intelligence artificielle, qui fait le point sur l'état de la recherche à ce sujet au sein de votre institut.

6. M. Bertrand Braunschweig, directeur du centre Inria de Saclay

J'ai effectivement coordonné la réalisation de ce premier livre blanc sur l'intelligence artificielle, qui présente les équipes d'Inria actives dans les différents domaines de l'intelligence artificielle. L'Institut est organisé en équipes-projet, au nombre de deux cents environ, sur nos huit centres de recherche, et qui regroupent chacune une vingtaine de chercheurs en moyenne. Un tiers de ces équipes touche, de près ou de loin, au domaine de l'intelligence artificielle, une proportion qui a significativement augmenté ces dernières années, avec la montée en puissance de l'apprentissage-machine. Plus d'un millier de communications en conférence et plus de quatre cents articles dans les revues consacrées à l'intelligence artificielle ont été publiés par nos chercheurs au cours des dix dernières années.

Ce livre blanc mentionne quelques faits marquants qui motivent l'intérêt actuel pour l'intelligence artificielle, et rappelle aussi qu'il y a des questions de société à traiter. Inria a pris des initiatives en ce sens depuis plusieurs années, en créant, au sein de l'alliance Allistene, la commission de réflexion sur l'éthique de la recherche en sciences et technologies du numérique (CERNA), dont le premier rapport public traite de la recherche en robotique, ainsi qu'en se dotant d'un organe interne, le comité opérationnel d'évaluation des risques légaux et éthiques, qui traite les cas pratiques soumis par nos équipes de recherche. En cette année où nous célébrons les cinquante ans d'Inria, nous entendons contribuer au débat public qui doit exister sur l'intelligence artificielle.

L'année 2017 est aussi celle de la préparation de notre plan stratégique scientifique pour la période 2018-2022. Ce plan sera organisé autour de défis scientifiques motivants, dont plusieurs porteront, soyez-en certains, sur l'intelligence artificielle. Nous finissons, en ce moment, un nouveau livre blanc sur le véhicule autonome et connecté : un des défis du plan devrait porter sur ce sujet.

Le livre blanc est structuré en huit sous-domaines, sur lesquels nos équipes sont actives et qui couvrent une bonne partie de la recherche en intelligence artificielle. On y trouve, entre autres entrées, les défis génériques de l'intelligence artificielle, l'apprentissage automatique, l'analyse des signaux - vision et parole, notamment -, les connaissances et le web sémantique, la robotique et les véhicules autonomes, les neurosciences et la cognitique, le traitement du langage, la programmation par contrainte pour l'aide à la décision.

Je m'en tiendrai à formuler quelques remarques sur certains secteurs qui me paraissent particulièrement importants. En matière d'apprentissage automatique, la révolution de l'intelligence artificielle est essentiellement venue de progrès scientifiques considérables en matière de traitement du langage et de la parole, de vision, de robotique et, surtout, d'apprentissage automatique. En cette dernière matière, même si des résultats remarquables ont été obtenus, il reste encore de nombreux défis propres à motiver longtemps les chercheurs.

Je pense, en particulier, à l'apprentissage non supervisé, sans intervention d'un oracle humain, à l'apprentissage sous contrainte, par exemple pour la gestion de la vie privée, à l'apprentissage de causalité, indispensable pour construire des systèmes prédictifs, ou encore à l'apprentissage continu et sans fin, pour des systèmes destinés à opérer vingt-quatre heures sur vingt-quatre, sept jours sur sept.

Autre défi, l'interaction avec les humains.

Les systèmes d'intelligence artificielle étant appelés à interagir avec des utilisateurs humains, ils doivent être capables d'expliquer leur comportement, de justifier les décisions qu'ils prennent, faute de quoi, ces systèmes ne seront pas acceptés, par manque de confiance. J'ajoute que les systèmes d'intelligence artificielle ont besoin d'une certaine flexibilité et doivent être capables de s'adapter à différents utilisateurs et différentes attentes. Il importe donc de développer des mécanismes d'interaction favorisant une bonne communication entre humains et systèmes d'intelligence artificielle.

J'en viens au défi de l'ouverture à d'autres disciplines. Sachant que l'intelligence artificielle sera souvent intégrée dans un système comportant d'autres éléments, les spécialistes du domaine devront collaborer avec ceux d'autres sciences de l'informatique - modélisation, vérification, validation, visualisation, interaction machine -, ainsi que d'autres disciplines comme la psychologie, la biologie, les mathématiques, mais aussi les sciences humaines et sociales - économie, ergonomie, droit. Le mieux serait que les chercheurs possèdent une double, voire une triple compétence, afin de faire sauter les barrières disciplinaires, qui rendent malheureusement difficile la réalisation de systèmes complets. J'ai bon espoir que les instituts Convergence, financés par les investissements d'avenir, y contribuent. En attendant, il est indispensable de composer des équipes pluridisciplinaires pour aborder les problèmes sous tous les angles.

Composante incontournable des systèmes critiques, la certification des systèmes d'intelligence artificielle ou leur validation par des moyens appropriés constitue également un véritable défi. Alors que la vérification, la certification et la validation des systèmes classiques sont déjà des tâches difficiles, même s'il existe des outils exploitables, l'application de ces outils aux systèmes d'intelligence artificielle comportant notamment des systèmes d'apprentissage automatique est une tâche encore plus ardue, à laquelle il convient de s'attaquer si nous voulons utiliser ces systèmes dans des environnements tels que ceux de l'avion, des centrales nucléaires, des hôpitaux...

J'en arrive à l'interaction entre l'apprentissage et la modélisation, sujet qui nous tient particulièrement à coeur. Alors que les scientifiques passent beaucoup de temps à concevoir des modèles - physiques, mathématiques, symboliques -, les algorithmes d'apprentissage ignorent encore assez largement ces modèles, et travaillent sur des données brutes. Il faut, à notre sens, briser cette barrière entre apprentissage et modélisation, pour établir une interaction dans les deux sens, afin d'améliorer les performances de l'apprentissage automatique grâce aux connaissances synthétisées dans des modèles, ce qui permettra, en retour, d'améliorer ou de spécialiser ces modèles, grâce aux résultats de l'apprentissage. Cela peut requérir une interface entre les couches numérique et symbolique : la tâche n'est pas facile, mais c'est un peu le Graal dont la poursuite doit nous occuper.

Parmi les autres défis importants, sur lesquels je pourrais revenir au cours du débat, il faut également compter la gestion des données multimodales provenant de différents capteurs, la compréhension de scènes et d'environnements, en particulier pour les robots et les véhicules autonomes, et, toujours pour les robots, la prise en compte de l'incertitude et des données incomplètes ou disponibles seulement à une certaine fréquence. Je pense également, pour le domaine du web sémantique, à la connexion entre les ontologies, qui en constituent le moteur, et les données stockées dans les bases, qui en sont le carburant.

Le plus grand défi, pour conclure, n'est non pas technique, mais stratégique. La France excelle sur tous ces sujets en raison de la qualité de ses scientifiques. Tant pour les approches mathématiques - statistique, modélisation, optimisation, apprentissage - que pour la modélisation et la représentation des connaissances, nous bénéficions d'une longue tradition de raisonnement logique et de cartésianisme. Pour preuve, les chercheurs français suscitent de plus en plus la convoitise des entreprises internationales, qui offrent des niveaux de salaire et de financement extrêmement motivants. Mettre nos capacités au service du développement économique grâce au transfert technologique doit permettre à nos entreprises de prendre des parts d'un marché international en forte croissance. Nos entreprises, grandes et petites, ont besoin de ces technologies ; nos chercheurs en intelligence artificielle sont parmi les meilleurs au monde : il faut tisser plus de liens entre ces deux mondes. Cela pourrait être la mission principale d'un grand plan national en intelligence artificielle. Demain sera d'ailleurs lancée la préparation de la stratégie nationale en intelligence artificielle, sous le patronage des deux ministères concernés, celui de l'industrie et celui de la recherche. Inria estime que notre pays doit se montrer ambitieux et faire de l'intelligence artificielle une vraie priorité. Au vu des investissements que consentent plusieurs grands pays, c'est au moins un milliard d'euros sur dix ans qu'il faut mobiliser, aides publiques et contribution des acteurs économiques confondues ; je pense aux entreprises, mais aussi aux collectivités territoriales, qui pourraient fournir des sites d'expérimentation grandeur réelle. Tel est le principal défi qu'Inria vous propose de relever.

M. Claude de Ganay, rapporteur . - Monsieur David Sadek, vous êtes directeur de la recherche de l'Institut Mines-Télécom. Enseignant-chercheur et spécialiste en intelligence artificielle, vous avez mené une carrière atypique, puisque vous êtes d'abord entré chez Orange, dont vous êtes devenu, il y a dix ans, le directeur délégué à la recherche avant de revenir à la recherche publique.

7. M. David Sadek, directeur de la recherche à l'Institut Mines-Télécom

Permettez-moi d'abord d'évoquer les publications de l'Institut Mines-Télécom, notamment son cahier de veille sur l'intelligence artificielle, qui offre une sorte de patchwork de points de vue sur le sujet. Créé conjointement avec la Fondation Télécom, ce cahier témoigne de la diversité de nos activités dans le domaine de l'IA, qui touchent au traitement des données massives - en la matière, plusieurs chaires industrielles sont portées par l'Institut -, à l'apprentissage, à la reconnaissance des formes, à la compréhension de scènes, à la représentation des connaissances, aux neurosciences informationnelles - domaine nouveau qui vise à caractériser l'information mentale et corticale -, à la robotique, aux réflexions éthiques.

Si j'aborde dans mon intervention la question de l'apprentissage, sur laquelle les orateurs m'ayant précédé ont également mis l'accent, je n'en estime pas moins qu'il faille se garder de réduire l'intelligence artificielle à un seul de ses pans.

L'intelligence artificielle est un vaste domaine, pluridisciplinaire, dont l'unité tient en ceci que l'on y cherche à inculquer à des machines des compétences cognitives qui sont le propre de l'humain. Comme je le dis souvent, l'intelligence artificielle, c'est la didactique des machines : il s'agit de parvenir à expliquer à une machine comment faire des choses que l'humain fait très bien. Cela pose un ensemble de défis, au nombre de six ou sept.

Bertrand Braunschweig a évoqué des défis génériques ; je me situerai à un échelon plus « primitif ». Gérard Sabah a parlé de la représentation du sens : ce n'est pas parce qu'une machine parvient à classer une image de chat dans un groupe d'images similaires qu'elle a compris ce qu'était un chat. Certes, on avance dans le traitement sémantique de l'information, et d'autres approches essaient de tendre vers une représentation du sens au moyen de ce que l'on appelle des ontologies ou des réseaux sémantiques, mais il n'en demeure pas moins que la représentation du sens reste encore un défi pour l'intelligence artificielle.

Autre défi, la notion de sens commun.

L'être humain se caractérise par sa capacité à raisonner sur la base d'informations approximatives, en menant des raisonnements symboliques du type « en général » : « En général il fait beau en Bretagne », assertion au reste discutable... Il use de raisonnements par défaut, mais aussi de raisonnements par analogie : « Paris est à la France ce que Washington est aux États-Unis », par exemple. Mais, dans le domaine de l'intelligence artificielle, de tels modes de raisonnement ne sont pas encore assimilés, y compris par les approches que l'on met aujourd'hui en avant.

Autre gageure, évoquée par Jean-Gabriel Ganascia, le sujet des agents conversationnels : l'interaction, le dialogue avec la machine. C'est en soi un concentré de défis. Il n'est d'ailleurs pas anodin que le fameux test de Turing fasse appel à du dialogue humain-machine. Sont en jeu des comportements qui supposent une compréhension du langage naturel, une interprétation en contexte, qui fait sortir du simple jeu des questions-réponses, etc. N'allez pas croire qu'un logiciel comme Siri a résolu la question ; on en est loin. Avoir avec une machine un dialogue évolué reste encore un défi pour l'intelligence artificielle, quelle qu'en soit l'approche. Outre les compétences que je viens de citer, il faut aussi y ajouter des capacités de raisonnement, d'introspection, de production de langage, etc. Gérard Sabah a rappelé que l'on est loin encore de comprendre ce qu'est la notion de conscience - elle reste d'ailleurs, dans la sphère de l'humain, indécidable pour tout autre que soi - ;ce qui doit nous importer, c'est plutôt le rôle causal des aptitudes cognitives attribuées à une machine.

Sans aller donc jusqu'à traiter la question de la conscience, celle de l'introspection, c'est-à-dire la capacité, pour une machine, à raisonner et à réfléchir sur ses propres connaissances et ses propres comportements, reste un défi pour l'intelligence artificielle.

Vient ensuite ce que l'on appelle l'intelligence émotionnelle, à savoir la capacité à caractériser et à reconnaître des émotions.

À quoi il convient encore d'ajouter la capacité d'expliquer les comportements, d'en rendre compte. C'est là un point très important car un système d'intelligence artificielle, pour être acceptable, doit être capable d'expliquer ce qu'il est en train de faire et pourquoi. Une machine, autrement dit, doit être au fait de ce qui régit son fonctionnement.

Autre point important, ce que l'on appelle la « prouvabilité » des systèmes, soit la capacité à montrer qu'un système intelligent fait ce que l'on attend de lui, et seulement ce que l'on en attend. Alors que l'on se soucie beaucoup, aujourd'hui, des règles éthiques, il serait malvenu que des systèmes intelligents soient utilisés à des fins autres que celles pour lesquelles ils ont été initialement conçus. Or des comportements contraires à l'éthique peuvent émerger de manière imprévue dans un système dont les propriétés n'auraient pas été prouvées, au sens que je viens de définir, ex ante . Je cite souvent l'exemple d'un système de bataille navale utilisé, du temps où j'étais jeune chercheur, par le Département de Défense américain, pour entraîner des pilotes de flotte navale. On s'est aperçu que, si le système gagnait tout le temps, c'est parce qu'il détruisait les bateaux touchés de sa propre flotte, pour qu'ils ne la ralentissent pas ! On avait pourtant simplement indiqué au système qu'il fallait maximiser la vitesse de la flotte, et il a fait de lui-même cette inférence simple qu'un bateau touché la ralentissait. Voilà ce qui peut advenir lorsque la validité d'un système intelligent n'a pas été prouvée. La recherche de l'objectif de maximisation peut conduire à des actions non éthiques.

J'insiste, pour conclure, sur l'hybridation des approches, de nature à faire avancer la recherche. Les approches, qu'elles soient neuro-inspirées, connexionnistes, stochastiques ou, au contraire, cognitivistes ou symbolistes ont toutes à apporter dans la compréhension, la modélisation et la mise en oeuvre des comportements intelligents. Nous avons des équipes excellentes, en France, dans la plupart de ces pans de l'intelligence artificielle, et nous devrions nous investir pour que ces équipes travaillent ensemble. Nous sommes à l'aube d'une ère nouvelle. Cela exige de faire la part des choses, de trier entre le bon grain et l'ivraie. Les approches par apprentissage, notamment le deep learning , sont très performantes pour tout ce qui relève de la perception - reconnaissance de sons, de parole, d'images, etc., traitement de signaux pour la reconnaissance de formes -, tandis que ce qui a trait à la mobilisation de comportements intelligents, relevant plus de la cognition, tels que la conduite de dialogues humain-machine, et qui passe par des notions d'attitudes mentales et de raisonnement symbolique, reste largement à défricher par ces approches : la combinaison de méthodes d'inspiration cognitive et d'approches faisant appel à la classification stochastiques serait, en la matière, fructueuse.

M. Claude de Ganay, rapporteur . - Monsieur Jean-Daniel Kant, vous êtes maître de conférences à l'Université Pierre-et-Marie-Curie Paris-VI. Spécialiste de la technologie, peu connue, des systèmes multi-agents, vous vous intéressez à l'hybridation entre technologies d'intelligence artificielle.

8. M. Jean-Daniel Kant, maître de conférences à l'Université Pierre-et-Marie-Curie Paris-VI

Je vous remercie de votre invitation et de l'initiative de l'OPECST. C'est une excellente idée de nouer le dialogue entre chercheurs et parlementaires, et j'espère que cette occasion qui nous est donnée de nous rencontrer sera suivie de bien d'autres.

Je vais m'efforcer de vous exposer ce que sont les systèmes multi-agents. Le deep learning , le machine learning , les robots sont la face visible de l'intelligence artificielle, qui comporte cependant d'autres aspects, évoqués par David Sadek et Bertrand Braunschweig. L'intelligence artificielle, de fait, se décline au pluriel. L'une de ses approches se situe du côté des données, tandis que l'autre se tourne plutôt vers les comportements. La première approche vise, grâce au traitement d'un très grand nombre de données, à faire émerger des comportements liés à l'intelligence humaine. Elle est beaucoup utilisée pour la reconnaissance de formes, mais aussi en aide à la décision. Les banques commencent ainsi à utiliser de tels systèmes pour décider à quels clients accorder un prêt. Les assurances s'y lancent également, pour détecter les fraudes.

Les réseaux de neurones - l'appellation est métaphorique - sont très puissants, mais ce sont des boîtes noires. Les spécialistes, comme Yann LeCun, disent, honnêtement, qu'ils ne savent pas vraiment comment cela fonctionne. Il y a là une question politique, une question citoyenne. Qui voit son banquier rejeter sa demande de prêt, s'il s'entend répondre, quand il demande les raisons du refus, que c'est parce que le neurone n° 39 et la connexion 48 étaient inférieurs à 0,4, est en droit de s'offusquer, et pourrait bien se pourvoir en justice.

Vous le savez, l'Union européenne a été réactive en ce domaine, puisqu'un règlement et une directive adoptés récemment concernent l'explication des décisions automatisées. Bientôt, tous les systèmes devront être capables de justifier leur comportement. Cela sera sans nul doute un frein à l'utilisation, dans l'aide à la décision, des systèmes à réseaux de neurones.

L'autre approche, qui n'est pas gouvernée par les données, passe par la modélisation des comportements humains. Elle s'efforce, dans une démarche pluridisciplinaire, faisant appel à des psychologues, des économistes, des sociologues, de comprendre les mécanismes qui régissent les comportements humains, pour tenter de les modéliser dans des programmes informatiques.

Un système multi-agents est fait de programmes autonomes, dotés de certaines capacités cognitives, qui peuvent être très simples ou très complexes. Ces programmes, que l'on appelle « agents », communiquent entre eux, interagissent, pour former une sorte d'intelligence collective. Cela est très utile lorsque l'on veut modéliser des systèmes humains, sociétés ou économies.

L'autre question qui vaut d'être posée est celle des objectifs de l'intelligence artificielle. J'en vois deux. L'un est de faire des machines intelligentes, autonomes, destinées, même si on ne le présente pas ainsi, à remplacer les êtres humains. Quand on crée une voiture autonome, plus besoin de chauffeur. Dans tous les cas où l'on considère que l'être humain sera moins performant que la machine, ou dans les cas où l'on ne peut employer qu'un robot - pour une expédition vers Mars, par exemple -, cela fait sens. Mais la société, le monde politique doivent s'interroger : est-ce le cas dans tous les domaines ? D'autant que remplacer les humains par des machines n'est pas sans incidence sur le marché de l'emploi, c'est mettre des gens au chômage, et c'est bien pourquoi Barack Obama évoquait l'idée de revenu universel.

Le second objectif de l'intelligence artificielle est non pas de remplacer l'homme, mais de lui apporter une assistance. Quand on dialogue avec Siri, on obtient de l'aide. En viendra-t-on un jour à ne plus dialoguer qu'avec des machines ? C'est une autre histoire.

Quoi qu'il en soit, mes recherches sont plutôt orientées vers cet objectif d'aide à la décision. Quelles en sont les applications potentielles ? Elles peuvent concerner, par exemple, l'économie. C'est ainsi qu'avec l'économiste Gérard Ballot nous avons développé un simulateur multi-agents du marché du travail français. Grâce à une modélisation à 1/2 000 e de ce marché, nous sommes en mesure d'évaluer des politiques publiques. Nous avons, par exemple, évalué la loi El Khomri, et les résultats, assez surprenants, font apparaître que les choses sont beaucoup plus compliquées que ce qui se disait alors. Cette évaluation a donné lieu à bien des réactions sur le web , les gens se demandant pourquoi les ministères n'utilisaient pas de tels systèmes pour faire leurs études d'impact. Certes, être totalement prédictif sur une matière aussi complexe que le marché du travail n'est pas facile, mais il reste que les systèmes multi-agents sont une voie.

Nous avons également créé des applications dans le domaine social pour étudier la diffusion de l'innovation dans une population de consommateurs, ou bien la dynamique des opinions et des attitudes - nous réfléchissons actuellement à un projet destiné à étudier la radicalisation sur Internet.

Créer des systèmes fonctionnant comme un miroir de l'activité humaine est un moyen, à mon sens, pertinent pour rendre compte de leur complexité. On peut également hybrider, et étudier les interactions entre l'humain et ces technologies.

C'est une voie prometteuse, mais qui demande des moyens. En France, hélas !, nous en manquons. Ce serait pourtant le moyen de garantir notre souveraineté, par rapport à des pays comme les États-Unis ou la Chine. J'insiste aussi sur l'utilité de la recherche pluridisciplinaire, qui n'est pas assez défendue.

M. Claude de Ganay, rapporteur . - Monsieur Benoît Le Blanc, vous êtes directeur adjoint de l'École nationale supérieure de cognitique. Vous êtes spécialiste en intelligence artificielle et assumez actuellement une mission pour le ministère de l'enseignement supérieur et de la recherche, dont vous nous direz sans doute quelques mots.

9. M. Benoît Le Blanc, directeur adjoint de l'École nationale supérieure de cognitique

Beaucoup a déjà été dit sur les technologies d'intelligence artificielle, un sujet dont on débat dans les médias. La maturité de ces technologies, issues de laboratoires de recherche, est-elle suffisante pour que des entreprises engagent des moyens destinés à développer massivement des produits qui vont bouleverser notre quotidien ? Telle est la question.

À titre personnel, je dois dire que je suis impressionné par le programme Watson et les capacités de développement informatique que met à disposition IBM, au travers de son logiciel Bluemix . Un tel logiciel permet de développer des applications de « cognitive computing », pour, par exemple, transformer le langage en texte, ou inversement.

À lire rapidement les journaux et sites web d'actualité, on pourrait considérer qu'il existe, dans le paysage de l'intelligence artificielle, deux groupes d'acteurs, l'un constitué par les chercheurs « à l'ancienne » que nous sommes, l'autre par de jeunes découvreurs de la French Tech , qui lancent des start-up sur tous les sujets, en y injectant de l'intelligence artificielle.

Or les technologies d'intelligence artificielle sont pour certaines destinées à des usages par le public et, dès lors qu'intervient le facteur humain, les choses sont beaucoup plus complexes qu'il n'y paraît. De fait, les programmes d'intelligence artificielle sont destinés à converser avec les personnes. Nous avons, en France, beaucoup de talents en sciences humaines et sociales, des laboratoires très performants, peuplés de chercheurs très technophiles, qui peuvent nous apporter beaucoup. Cela suppose, et j'insiste, d'être capable de s'affranchir des barrières disciplinaires qui nous enferment dans certains modes de pensée. Nous sommes passés, entre la fin du XX e siècle et l'aube du XXI e siècle, des sciences de l'information aux sciences de la connaissance, lesquelles supposent d'être capable de donner un contexte et du sens à l'information.

La cognitique est ainsi à l'informatique ce que la connaissance est à l'information. Il s'agit dans la cognitique d'adapter la technologie aux capacités, aux limites, aux préférences humaines, pour en rendre l'usage plus simple. L'École nationale supérieure de cognitique, au sein de Bordeaux INP, développe un programme d'enseignement en ingénierie lié à notre programme de recherche sur la cognition et aux entreprises passionnées par le sujet et hébergées sur notre campus. Nous travaillons sur l'expérience utilisateur, soit la manière dont les gens interagissent avec les technologies et au-delà, nous développons des programmes du futur autour du partage des connaissances et de l'hybridation humain-machine au service de la cognition. Autrement dit, il s'agit de réfléchir, d'une part, à la manière dont les gens vont partager les connaissances entre eux, et, d'autre part, vont intégrer à leur personne même une composante technique.

Si j'observe la manière dont nous avons mené chacun préparé et mené nos exposés ce matin, je constate que certains utilisent un diaporama pour appuyer leur discours, quand d'autres préfèrent s'en remettre à des notes manuscrites, imprimées ou bien lues sur l'écran de leur ordinateur. Nous sommes tous informaticiens et, pourtant, nous restons, mentalement, pluriels. Nos approches de la technologie sont diverses. De la même manière, c'est en mettant au creuset de l'interdisciplinarité sciences de l'information et de la cognition et sciences sociales et humaines que l'on créera des synergies.

Par exemple, nous butons, à l'heure actuelle, sur la capacité à relier réseaux sémantiques et réseaux neuronaux. Cela signifie que les modèles mentaux ancrés chez les chercheurs sont profondément différents. Certains sont « symbolistes » - j'en fais partie, comme plusieurs autour de cette table - et pensent que l'on crée de l'intelligent en manipulant des symboles, d'autres sont « émergentistes », et travaillent sur les réseaux de neurones en pensant que l'on crée de l'intelligent par association de petites unités en configurations : il faut pouvoir travailler ensemble, même s'il est difficile de comprendre les présupposés et les postures intellectuelles de chacun.

L'intelligence artificielle et la cognition sont des domaines de recherche transdisciplinaires, au même titre que la santé publique, les études sur le climat ou l'alimentation ; tous ces domaines appellent des expertises larges. Mais le problème est que l'on appréhende la transdisciplinarité par le biais de chercheurs attachés à une discipline. Il n'existe pas d'instance qui permette d'évaluer sereinement et positivement les travaux que mènent des chercheurs quand ils changent de section, de bain disciplinaire, si bien que le faire représente un sacrifice de carrière. Il faut parvenir à lever ce frein.

La transdisciplinarité doit nous guider vers des recherches axées sur la performance combinée entre le cerveau humain et le calcul de la machine. Plus que d'une acceptabilité des machines, je parlerai d'une appropriation, qui se fera lorsque les gens tireront bénéfice de l'usage de leur propre machine.

J'ai eu le privilège de discuter avec deux personnalités qui m'ont marqué : Anatoli Karpov, il y a quelques années, lors de l'une de ses conférences, où il expliquait très clairement que, dès lors que les machines battent les humains aux échecs, l'avenir du jeu d'échecs passe par la confrontation de joueurs utilisant des machines, et, plus récemment, Fan Hui, champion d'Europe de jeu de Go qui a alimenté la machine par laquelle le champion du monde, Lee Sedol, a été battu. Fan Hui, appelé à tester cette machine, dit s'être retrouvé face à elle comme face à un mur. La machine l'a battu, et il a, raconte-t-il, éprouvé une terrible honte. Cela a été pour lui d'autant plus difficile à vivre qu'il a dû garder le secret jusqu'au combat contre Lee Sedol, mais il conserve, dit-il, la fierté d'avoir été le premier champion de Go battu par une machine. Cette compétition lui a permis de mesurer combien il est difficile de garder confiance face à une machine qui joue sans subir aucun doute, sans aucune psychologie. Cela m'a éclairé sur la capacité des machines à aider les humains à comprendre leur situation. Pour Fan Hui, AlphaGo a tout cassé, ce qui lui permet de réfléchir maintenant à la conduite du jeu, de façon beaucoup plus libre.

Assiste-t-on à un véritable progrès ? Est-ce que la nouvelle vague annoncée de l'intelligence artificielle va submerger notre intelligence ? Je ne le crois pas. Pour cela il faudrait que l'on travaille sur des algorithmes de reconnaissance du fond plutôt que de continuer à faire des algorithmes de reconnaissance des formes, mais cela suppose de se pencher sur le véritable lien qui relie syntaxe et sémantique : c'est le problème auquel on se confronte, depuis des années, tant pour le langage que pour l'intelligence artificielle.

M. Claude de Ganay, rapporteur . - Merci de ces exposés passionnants. Place, à présent, au débat interactif.

10. Débat

Mme Laurence Devillers, professeure à l'Université Paris-Sorbonne et chercheuse au Laboratoire d'informatique pour la mécanique et les sciences de l'ingénieur (Limsi) du CNRS. - Il est en effet passionnant d'être confronté à tous ces défis : ils sont bien souvent les mêmes au CNRS qu'à Inria ou à l'Institut Mines-Télécom. Je vous appelle cependant, en conscience, à oublier un peu les instituts auxquels nous appartenons chacun, pour essayer de réfléchir à ce que nous pourrions faire ensemble. Si l'on veut entrer en concurrence avec les GAFA ou leur équivalent chinois, les BATX - Baidu, Alibaba, Tencent et Xiaomi -, il faut construire ensemble, autour, par exemple, d'un projet sur l'éthique et les risques numériques, on a besoin d'un institut commun de réflexion à ce sujet. En Grande-Bretagne, on a vu de nombreux projets émerger de cette façon. En France, trop de chapelles différentes coexistent, quand nous aurions besoin de bâtir une vision unifiée des efforts à mettre en oeuvre. Qu'en pensez-vous ?

M. Jean Ponce, professeur et directeur du département d'informatique de l'École normale supérieure (ENS). - Beaucoup ont opposé les méthodes d'intelligence artificielle symboliques et les méthodes de type deep learning , attachées aux données, pour souligner le besoin d'hybridation entre l'une et l'autre. N'oublions pas, cependant, que cette hybridation existe déjà dans de nombreux domaines. Je pense, par exemple, au traitement du langage et de la parole, à la robotique, à la vision artificielle - mon domaine - où existe un effort de modélisation important : ce ne sont pas des sous-domaines de l'apprentissage statistique, qui, lui-même, ne se résume pas à l'apprentissage profond. Malheureusement, les outils classiques de l'intelligence artificielle n'ont pas eu l'impact qu'ont aujourd'hui d'autres approches.

Il a été question des besoins de financement. Le problème auquel on fait face tient au fait que nous formons d'excellents jeunes chercheurs que les grandes compagnies américaines se disputent, au point qu'attirer et retenir ces chercheurs dans nos laboratoires est extrêmement difficile, comme l'a souligné Bertrand Braunschweig, du fait des différences de salaire. Nous avons à l'École normale supérieure l'exemple des étudiants de nos deux masters spécialisés. Pour remédier à ces difficultés, il faut, à mon avis, rechercher des partenariats avec l'industrie.

M. Basile Starynkevitch, Institut List, Commissariat à l'énergie atomique (CEA). - Je suis un geek , j'aime coder. Je viens de terminer de rédiger une proposition qui m'a demandé trois mois de travail pour un appel qui se clôturait hier. J'ai une chance sur cent d'être retenu.

L'intelligence artificielle a encore besoin d'infrastructures logicielles. Le logiciel libre est une solution ; je suis ainsi membre de l'association April. Mais je ne suis pas un spécialiste en la matière, bien d'autres en parleraient mieux que moi.

Les projets de R&D en intelligence artificielle, parce que l'espérance de vie des start-up est de trente ou trente-cinq mois, sont le plus souvent limités à trente-six mois. Il serait souhaitable de prévoir des durées plus longues : s'il faut neuf mois à une femme pour faire un bébé, il ne faut pas un mois à neuf femmes pour en faire un. C'est la même chose pour les chercheurs !

M. Claude de Ganay, rapporteur. - Dans quelle direction les efforts de recherche en intelligence artificielle doivent-ils porter en priorité ?

M. Jean-Gabriel Ganascia. - Les financements, en France, vont à des projets de très court terme. Si les chercheurs rejoignent de grands groupes privés, c'est certes parce que les salaires y sont supérieurs, mais aussi parce que les conditions sont désastreuses dans la recherche publique : ils ont envie d'aller au bout de leurs projets, et, dans le public, cela n'est que rarement possible.

La France aurait tendance à copier les modes de financement des États-Unis ? Non, car les durées sont plus longues outre-Atlantique. Aujourd'hui, il n'y a pas de mémoire dans les institutions de financement de la recherche française...

M. David Sadek. - Un institut d'éthique de l'intelligence artificielle est une idée à explorer. Beaucoup de questions se posent, et des règles collectives seraient utiles. Nous avons besoin d'une approche inter-instituts comme le disait Laurence Devillers.

Sur l'hybridation des approches, très souhaitable également, je veux signaler qu'il y a eu, comme Jean Ponce l'a rappelé, de nombreuses tentatives, depuis longtemps, par exemple sur le traitement de la parole. On la pratique sur certains domaines. En revanche, sur les comportements plus évolués, l'interaction des machines, le dialogue, il reste beaucoup à explorer...

M. Yves Demazeau. - Une dizaine de directions de recherche ont été identifiées. Il y a trente ans, l'intelligence artificielle était une matière intégrée, autour du rêve de machine intelligente, puis on s'est rendu compte de la complexité des choses, et l'intelligence artificielle a explosé en diverses communautés spécialisées. On ne compte pas moins d'une dizaine de conférences spécialisées en intelligence artificielle. Le défi à présent est de développer une science de l'intégration. Un drone en Chine transporte un passager de cent kilos ; un véhicule autonome se déplace dans les rues de villes américaines. Mais ni l'un ni l'autre ne rassemble les meilleures technologies des sous-disciplines. Il reste à les réunir !

Mme Dominique Gillot, rapporteure . - Je perçois dans vos propos, pourtant, le souci d'une démarche partagée, l'aspiration à l'interdisciplinarité. C'est un enjeu dont vous avez conscience.

M. Yves Demazeau. - Entre chercheurs, oui, mais pas entre organismes de recherche, ni entre institutions ou acteurs du secteur.

M. Jean-Daniel Kant. - L'offre, dans l'enseignement, est peut-être insuffisante, mais je signale que mon université propose deux masters en intelligence artificielle, l'un orienté sur les données, l'autre sur les comportements. Ils comptent au plus quatre-vingts étudiants, mais ils existent !

L'hybridation doit-elle être une priorité ? Pas nécessairement, car elle ne sera pas facile à faire, en tout cas sur les fonctions de haut niveau où ce sera très difficile. C'est facile sur des fonctions de bas niveau. On a essayé il y a une vingtaine d'années de plaquer des symboles dans les neurones, sans résultat. On peut aussi faire l'inverse... Il faut réfléchir avec les disciplines concernées et reprendre la question, sur l'apprentissage par exemple.

Mme Laurence Devillers. - L'hybridation existe déjà. Je vois le cas des dialogues hommes-machines. Si l'on veut être compétitif, il faut éviter de se poser éternellement des questions théoriques primaires.

M. Igor Carron. - Je suis le P-DG d'une petite start-up de hardware pour le machine learning . Je fais également partie d'un groupe qui organise les Paris Learning Machine Meetups , avec à ce jour soixante meetups , durant lesquels nous avons accueilli deux cents intervenants, autour d'un réseau de plus de 4 700 personnes. Un autre monde existe en matière d'intelligence artificielle : des personnes sorties d'école depuis un, deux ou trente ans se réunissent, non dans le cadre universitaire, mais au contact direct des recherches en cours, pour comprendre ce qui se passe.

Le besoin de l'État n'est pas de même nature en France qu'aux États-Unis : les discussions de ce matin sont très intéressantes, car l'aspect push est important ; on a envie de partager, d'échanger, d'envisager des projets. Mais l'aspect pull fait défaut en France. En Amérique, chaque administration a son programme pour associer start-up et grands groupes à la recherche du futur, sur la sécurité, sur les risques, etc. C'est le problème des incitations.

Bien des a priori qui existaient il y a vingt ans ont disparu, la connexion entre réseaux de neurones et approches symboliques progresse, l'explication des modèles aussi. Je suis allé au Nips - la Conference on Neural Information Processing Systems , le Davos de l'intelligence artificielle - à Barcelone récemment : j'ai constaté la faiblesse de la représentation française dans certains workshops absolument primordiaux, comme l'interprétation des modèles ou les composantes éthiques, par exemple.

Pourquoi n'y a-t-il pas en France une politique de pull assumée par l'administration, qui interrogerait les chercheurs sur certains sujets d'avenir ?

Mme Dominique Gillot, rapporteure . - Il y a deux ans que je sollicite l'OPECST pour engager ce travail. Hélas ! C'est dans l'urgence, juste avant la fin de nos mandats parlementaires, que nous nous penchons sur le sujet. Le secrétaire d'État à l'enseignement supérieur et la secrétaire d'État au numérique présenteront demain le début d'une stratégie nationale pour la recherche en intelligence artificielle : répondez à ces invitations, inscrivez-vous dans les ateliers proposés ! Le Conseil national de stratégie de la recherche vient d'étudier le livre blanc qui clôture la séquence des cinq dernières années, en matière d'enseignement supérieur et de recherche - la recherche y apparaît bien comme une nécessité fondamentale, la liberté des chercheurs étant mise en avant.

J'ai l'impression que les politiques sont toujours en réponse, jamais en tête de pont - ou en push ou, mieux, en pull , pour reprendre vos termes. C'est vrai que le politique n'est pas en pull . C'est bien là l'enjeu de rencontres comme celle d'aujourd'hui, qui doivent être valorisées, afin que les chercheurs, ceux qui travaillent sur l'avenir, orientent la décision politique. Aux États-Unis, les décideurs ont manifestement plus d'audace, ils prennent des risques, alors que, chez nous, en politique comme ailleurs, le principe de précaution l'emporte...

M. Jean Ponce. - Je veux dire, après avoir écouté M. Demazeau, qu'il existe un bon domaine intégrateur pour l'intelligence artificielle, c'est la robotique. Il doit être poussé et valorisé comme tel. Il y a quelques jours, aux États-Unis, deux cent cinquante millions de dollars ont été débloqués autour de la Carnegie Mellon University, à Pittsburgh, par un effort public-privé, pour financer des projets de robotique.

M. Patrick Aknin. - Je suis directeur scientifique de l'Institut de recherche technologique SystemX, qui fait le lien entre laboratoires et industrie sur des sujets où intervient l'intelligence artificielle, comme les véhicules autonomes, les smart grids ou réseaux électriques intelligents, les territoires intelligents, etc. Un frein à l'exploitation de l'intelligence artificielle réside, me semble-t-il, dans les lacunes de l'explication des décisions automatisées, leur « prouvabilité ». Il y a là un défi sociétal. S'y pencher permettrait de déverrouiller des propositions de chercheurs, afin d'aider l'homme dans sa vie quotidienne.

Cédric Villani, qui n'est pas connu comme un pro-connectionniste ou un mentor de l'apprentissage statistique, a parlé pourtant d'interactions dans le secteur : certains chercheurs assurent que, dans quelques années, on aura des preuves et une théorisation de ces approches par apprentissage, par exemple avec la théorie de Vapnik qui tente d'expliquer l'apprentissage d'un point de vue statistique. Après l'émergence du deep learning dans la période actuelle, on aura des propositions de théorisation. Il faudrait encourager ce type de travaux, pour dépasser les peurs collectives sur ces sujets.

M. Patrick Albert. - Je suis l'un des vétérans dans ce domaine, la good old-fashioned AI ou bonne IA à l'ancienne, avec une thèse de doctorat au centre de recherche de Bull, la création d'un premier centre industriel puis une des premières start-up, ILOG, dont le nom vient de l'abréviation des termes intelligence logicielle... vendue, hélas !, à IBM, car il n'y avait personne pour la racheter en France. Bref, j'ai une carrière à la fois scientifique et industrielle, et je suis membre du bureau de l'Association française pour l'intelligence artificielle (AFIA).

Pour déterminer des priorités, les critères sont nombreux, scientifiques, économiques, ayant trait à la défense nationale, à la citoyenneté, etc. Nous vivons de plus en plus sous le règne de l'algocratie, avec des algorithmes qui intègrent un apprentissage et qui prennent des décisions, mais sur quels motifs ? Google et Facebook sont ainsi régulièrement accusés de racisme : ils se bornent à répondre que leurs systèmes créent des distributions de probabilité qui fonctionnent. Ce n'est pas socialement acceptable, il faut pouvoir expliquer les décisions. Les entreprises doivent pouvoir justifier leurs choix. Pour l'allocation des prêts, les banques utilisent beaucoup ces outils, mais elles savent expliquer en partie la décision prise.

L'organisation de la recherche est un sujet difficile, il faudra pourtant progresser sur ce point pour mieux développer l'intelligence artificielle. J'en parle d'autant plus librement que je n'appartiens à aucune organisation. Chaque sous-domaine de ce secteur de la recherche a des velléités d'indépendance ; il est compliqué de réunir toutes les communautés. Des efforts sont à accomplir. L'intelligence artificielle est une technologie diffusante, dont les impacts doivent être pris en considération. Il faut aider les différentes communautés à s'organiser. Une organisation la moins centralisée possible serait la meilleure forme, même s'il faut fédérer l'ensemble des travaux et représenter le secteur auprès de l'État et la société.

M. Claude de Ganay, rapporteur . - Je vous remercie tous de votre participation à cette première table ronde et je laisse Dominique Gillot présider la deuxième table ronde.

Les thèmes associés à ce dossier

Page mise à jour le

Partager cette page