ANNEXE 4 : CONTRIBUTION DE M. RAJA CHATILA,
DIRECTEUR DE L'INSTITUT DES SYSTÈMES INTELLIGENTS ET DE ROBOTIQUE (ISIR)
« ROBOTIQUE ET INTELLIGENCE ARTIFICIELLE »

La problématique de l'intelligence artificielle telle que posée par Alan Turing 43 ( * ) était de savoir si les ordinateurs pouvaient être capables de « pensée » ( Can Machines Think? ) et il l'a immédiatement traduite par la question de l'imitation de l'homme. La question initiale de Turing portant sur la « pensée » a été traduite par les fondateurs de l'intelligence artificielle par celle de l'« intelligence », ou des « mécanismes de haut niveau ».

Cette manière de poser la question néglige un constat pourtant simple : le cerveau humain a évolué vers ce qu'il est en développant des capacités de perception, d'interprétation, d'apprentissage et de communication en vue d'une action plus efficace.

La problématique de la robotique pose l'ensemble de ces questions. Le robot-machine est soumis à la complexité du monde réel dans lequel il évolue et dont il doit respecter sa dynamique. La notion d'intelligence doit alors être posée de manière à rendre compte globalement des processus sensori-moteurs, perceptuels et décisionnels permettant l'interaction en temps-réel avec le monde en tenant compte des contraintes d'incomplétude et d'incertitude de perception ou d'action. C'est le sens de la définition de la robotique donnée par Mike Brady (Oxford) dans les années 1980 : « la robotique est le lien intelligent entre la perception et l'action ». Dans ce sens on peut aussi dire que le robot est le paradigme de l'intelligence artificielle « encorporée », c'est-à-dire une intelligence matérialisée dans un environnement qu'elle découvre et dans lequel elle agit.

Il est nécessaire d'adopter une vision d'ensemble du robot, en tant que système intégrant ses différentes capacités (perception/interprétation, mouvement/action, raisonnement/planification, apprentissage, interaction) et permettant à la fois la réactivité et la prise de décision sur le long terme. Ces fonctions doivent être intégrées de manière cohérente dans une architecture de contrôle globale (architecture cognitive) ; leur étude de manière séparée risque d'aboutir à des solutions inappropriées.

Perception, action, apprentissage

De nombreuses avancées ont été réalisées dans chacune des fonctions fondamentales du robot. Dans les années 1985-2000, la problématique de la localisation et de la cartographie simultanées ( Simultaneous Localisation And Mapping ) a connu un développement formidable qui a permis de bien en cerner les fondements et de produire des systèmes efficaces, le point faible important restant le manque d'interprétations plus sémantiques de l'environnement et des objets qui le composent. L'apprentissage profond a récemment fait une incursion considérable en robotique, prenant la place de l'apprentissage bayésien, à la fois pour la perception et pour la synthèse d'actions. Mais la perception en robotique nécessite une interaction du robot avec son environnement et non une simple observation de celui-ci . L'apprentissage par renforcement est un apprentissage non supervisé qui permet au robot de découvrir à la fois les effets de ses actions, caractérisés par une « récompense » obtenue comme conséquence de l'action, et l'incertitude de ses actions qui n'ont pas toujours les mêmes effets. Le lien entre perception et apprentissage - en particulier apprentissage par renforcement - est essentiel pour extraire la notion d' affordance qui rend compte des propriétés des objets en ce qu'elles représentent pour l'agent, et qui associe les représentations perceptuelles aux capacités d'action. C'est cela qui sert de base au robot pour exprimer le sens du monde qui l'entoure.

Interaction

Au-delà du traitement du langage naturel, les problèmes d'interaction et d'action conjointe homme-robot, avec la mise en oeuvre de « prise de perspective » est une problématique fondamentale pour permettre une interaction efficace et naturelle entre l'humain et le robot. Ce sujet demande un développement qui associe des recherches en robotique et en Sciences de l'Homme et de la Société (SHS), - en particulier, en sociologie, philosophie, psychologie, linguistique. Le rôle des émotions dans l'interaction est à explorer, bien au-delà de travaux actuels qui se contentent de classer a priori des expressions faciales ou de produire des expressions d'émotions artificielles par le robot. L'expression d'émotions par un robot pose des questionnements scientifiques et éthiques sur l'authenticité de ces émotions et sur l'anthropomorphisation qui peut en résulter.

Décision

La prise de décision s'appuie sur des techniques relativement classiques de l'intelligence artificielle. La non-adéquation de la planification déterministe avec les contraintes du monde réel a amené le développement de méthodes basées sur les processus décisionnels dans l'incertain, comme les processus markoviens. Ces approches trouvent cependant leurs limites dans une trop grande complexité. L'apprentissage d'actions en robotique est souvent réalisé par des méthodes d'apprentissage par renforcement et le lien entre planification et apprentissage n'est pas très clair. Des recherches sur de nouvelles approches alliant apprentissage et raisonnement probabiliste avec une convergence rapide sont nécessaires.

Conscience de soi

Mais la question initiale de Turing ne devrait-elle pas conduire à l'interrogation suivante (d'ailleurs évoquée par lui-même) : une machine peut-elle avoir une faculté de conscience d'elle-même ? Car malgré toutes les recherches en robotique et intelligence artificielle, les résultats, aussi significatifs soient-ils, restent le plus souvent applicables dans des contextes restreints et bien délimités. Ainsi, la perception ne permet pas à un robot de comprendre son environnement, c'est à dire d'élaborer une connaissance suffisamment générale et opératoire sur celui-ci (d'où la nécessité d'étudier la notion d' affordance ), la prise de décision reste limitée à des problèmes relativement simples et bien modélisés. Les principes fondamentaux restent largement incompris, qui permettraient aux robots d'interpréter leur environnement, de comprendre leurs propres actions et leurs effets, de prendre des initiatives, d'exhiber des comportements exploratoires, et d'acquérir de nouvelles connaissances et de nouvelles capacités. Les clés pour permettre la réalisation de ces fonctions cognitives peuvent être le méta-raisonnement et la capacité d'auto-évaluation, deux mécanismes réflexifs.

Pluridisciplinarité

La recherche en robotique pose des questions proches des sciences cognitives, des neurosciences et de plusieurs domaines des Sciences de l'Homme et de la Société (SHS), comme la sociologie, la psychologie et la philosophie. Des programmes interdisciplinaires seront probablement le bon moyen pour aborder les différentes facettes des questions fondamentales.

Deux aspects concernant l'éthique devraient être abordés: d'une part les méthodologies de conception éthique de systèmes autonomes, de manière à ce que ceux-ci tiennent compte des valeurs éthiques humaines (par exemple respect de la vie humaine, des droits humains) et de manière à ce que les algorithmes qui les régissent soient transparents, explicables, traçables, et d'autre part l'éthique des machines, c'est à dire comment les décisions prises par une machine peuvent intégrer un raisonnement éthique.


* 43 A. M. Turing (1950) Computing Machinery and Intelligence . Mind 49: 433-460.

Les thèmes associés à ce dossier

Page mise à jour le

Partager cette page