(2) Un exemple de technologie émergente: la propulsion tout-électrique

L'évolution récente du marché incite à s'interroger sur l'émergence de la propulsion tout-électrique dans le domaine des satellites. Au cours de l'année 2012, en effet, Boeing a vendu quatre exemplaires de sa plateforme 702SP ( small platform ), dont la propulsion est de ce type, à des clients asiatiques (Asia Broadcast Satellite) et mexicain (Satmex). Il s'agira de petits satellites (2 t), dotés de la même capacité d'emport de charge utile qu'un satellite à propulsion chimique de 3 à 4 tonnes.

Ce fait est particulièrement remarquable car il est porteur de rupture pour le marché, avec potentiellement des retombées sur celui des lanceurs, puisqu'il est pour le moment prévu que les satellites de Boeing soient lancés, par paire (2 tonnes chacun) par la fusée Falcon 9 de Space X. L'opérateur européen SES a pour sa part annoncé la commande prochaine de deux satellites à propulsion « tout électrique ».

La technologie « tout électrique » employée par Boeing équipe déjà des satellites de télécommunications militaires. Le moteur XIPS 41 ( * ) fonctionne grâce à du gaz Xénon, ionisé et accéléré, lors de son passage entre deux grilles, grâce à l'énergie électrique obtenue par le biais de panneaux solaires.

La propulsion électrique n'est pas nouvelle, puisqu'elle est déjà couramment utilisée pour maintenir le satellite sur sa position en orbite géostationnaire, c'est-à-dire pour de simples ajustements de trajectoire. Toutefois, pour le placement en orbite, consécutif au lancement, les ergols liquides continuent d'être utilisés. Dans sa nouvelle plateforme, Boeing utilise la propulsion électrique y compris pour le transfert des satellites vers leur orbite définitive, ce qui permet de faire l'économie du poids des ergols et des structures associées. Grâce à la masse ainsi gagnée, ce mode de propulsion permet soit de lancer des satellites plus légers, à capacité égale, avec un gain sur les coûts de lancement, soit de lancer des satellites encore plus puissants. Les avantages liés à cette petite plateforme suffisent à compenser l'inconvénient lié à un délai allongé de mise en orbite du satellite.

Le transfert vers l'orbite est en effet beaucoup plus long que pour les satellites à propulsion chimique, en raison d'une poussée plus faible, que compense une durée de vie plus longue. Il faut compter environ 6 mois pour transférer ces satellites vers leur orbite définitive, mais ce délai pourrait diminuer à l'avenir.

Couplée à l'apparition d'un lanceur moyen comme Falcon 9, ou d'un petit lanceur comme le Brésilien Cyclone, cette rupture pourrait se traduire par une croissance des commandes de satellites de taille modeste, donc une modification des tendances actuelles du marché.

La propulsion tout-électrique existe depuis quarante ans en ex-URSS. Eutelsat dispose d'un satellite tout-électrique (SESAT), lancé en mars 2000, et toujours en orbite à ce jour. Ka-Sat (plateforme Astrium), lancé en décembre 2010, utilise pour sa part une technologie hybride. Des projets sont en cours, avec le soutien du CNES et de l'ESA, pour accélérer la réalisation de satellites tout-électrique, dont la technologie est maîtrisée par Safran-Snecma.

Il est probable que les industriels européens soient amenés à développer rapidement une offre dans le domaine de la propulsion tout-électrique, pour rattraper leur retard par rapport à une entreprise comme Boeing qui a pris de l'avance, en lien avec Space X.

Orientation

- Susciter le développement d'une filière de satellites « tout électrique »


* 41 Xenon Ion Propulsion System

Page mise à jour le

Partager cette page